A Next-generation Reactor Concept


Book Description

The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.




The Integral Fast Reactor (IFR) Concept


Book Description

In addition to maintaining the viability of its present commercial nuclear technology, a principal challenge in the US in the 1990s and beyond will be to regain and maintain a position among the world leadership in advanced reactor research and development. In this paper we'll discuss factors which we believe should today provide the rationale and focus for advanced reactor R and D, and we will then review the status of the major US effort, the Integral Fast Reactor (IFR) program.




Plans for the Development of the IFR (Integral Fast Reactor) Fuel Cycle


Book Description

The Integral Fast Reactor (IFR) is a concept for a self-contained facility in which several sodium-cooled fast reactors of moderate size are located at the same site along with complete fuel-recycle and waste-treatment facilities. After the initial core loading with enriched uranium or plutonium, only natural or depleted uranium is shipped to the plant, and only wastes in final disposal forms are shipped out. The reactors have driver and blanket fuels of uranium-plutonium-zirconium alloys in stainless steel cladding. The use of metal alloy fuels is central to the IFR concept, contributing to the inherent safety of the reactor, the ease of reprocessing, and the relatively low capital and operating costs. Discharged fuels are recovered in a pyrochemical process that consists of two basic steps: an electrolytic process to separate fission products from actinides, and halide slagging to separate plutonium from uranium.




Integral Fast Reactor


Book Description

Argonne National Laboratory is developing a reactor concept that would be an important part of the worlds energy future. This report discusses the Integral Fast Reactor (IFR) concept which provides significant improvements over current generation reactors in reactor safety, plant complexity, nuclear proliferation, and waste generation. Two major facilities, a reactor and a fuel cycle facility, make up the IFR concept. The reactor uses fast neutrons and metal fuel in a sodium coolant at atmospheric pressure that relies on laws of physics to keep it safe. The fuel cycle facility is a hot cell using remote handling techniques for fabricating reactor fuel. The fuel feed stock includes spent fuel from the reactor, and potentially, spent light water reactor fuel and plutonium from weapons. This paper discusses the unique features of the IFR concept and the differences the quality assurance program has from current commercial practices. The IFR concept provides an opportunity to design a quality assurance program that makes use of the best contemporary ideas on management and quality.




Plentiful Energy


Book Description

The Integral Fast Reactor (IFR) is a fast reactor system developed at Argonne National Laboratory in the decade 1984 to 1994. The IFR project developed the technology for a complete system; the reactor, the entire fuel cycle and the waste management technologies were all included in the development program. The reactor concept had important features and characteristics that were completely new and fuel cycle and waste management technologies that were entirely new developments. The reactor is a "fast" reactor - that is, the chain reaction is maintained by "fast" neutrons with high energy - which produces its own fuel. The IFR reactor and associated fuel cycle is a closed system. Electrical power is generated, new fissile fuel is produced to replace the fuel burned, its used fuel is processed for recycling by pyroprocessing - a new development - and waste is put in final form for disposal. All this is done on one self-sufficient site.The scale and duration of the project and its funding made it the largest nuclear energy R and D program of its day. Its purpose was the development of a long term massive new energy source, capable of meeting the nation's electrical energy needs in any amount, and for as long as it is needed, forever, if necessary. Safety, non-proliferation and waste toxicity properties were improved as well, these three the characteristics most commonly cited in opposition to nuclear power.Development proceeded from success to success. Most of the development had been done when the program was abruptly cancelled by the newly elected Clinton Administration. In his 1994 State of the Union address the president stated that "unnecessary programs in advanced reactor development will be terminated." The IFR was that program.This book gives the real story of the IFR, written by the two nuclear scientists who were most deeply involved in its conception, the development of its R and D program, and its management.Between the scientific and engineering papers and reports, and books on the IFR, and the non-technical and often impassioned dialogue that continues to this day on fast reactor technology, we felt there is room for a volume that, while accurate technically, is written in a manner accessible to the non-specialist and even to the non-technical reader who simply wants to know what this technology is.




Fission Energy


Book Description

The Integral Fast Reactor (IFR) is an innovative reactor concept being developed at Argonne National Laboratory as a such next- generation reactor concept. The IFR concept has a number of specific technical advantages that collectively address the potential difficulties facing the expansion of nuclear power deployment. In particular, the IFR concept can meet all three fundamental requirements needed in a next-generation reactor as discussed below. This document discusses these requirements.




The Integral Fast Reactor (IFR) Concept


Book Description

The IFR concept employs a pool layout, a U/Pu/Zr metal alloy fuel and a closed fuel cycle based on pyrometallurgical reprocessing and injection casting refabrication. The reactor physics issues of designing for inherent safety and for a closed fissile self-sufficient integral fuel cycle with uranium startup and potential actinide transmutation are discussed.




Integral Fast Reactor Concept Inherent Safety Features


Book Description

The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: (1) a liquid metal (sodium) coolant, (2) a pool-type reactor primary system configuration, (3) an advanced ternary alloy metallic fuel, and (4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS).




Integral Fast Reactor Concept


Book Description

The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path.




Evolution of the Liquid Metal Reactor


Book Description

The Integral Fast Reactor (IFR) concept has been under development at Argonne National Laboratory since 1984. A key feature of the IFR concept is the metallic fuel. Metallic fuel was the original choice in early liquid metal reactor development. Solid technical accomplishments have been accumulating year after year in all aspects of the IFR development program. But as we make technical progress, the ultimate potential offered by the IFR concept as a next generation advanced reactor becomes clearer and clearer. The IFR concept can meet all three fundamental requirements needed in a next generation reactor. This document discusses these requirements: breeding, safety, and waste management. 5 refs., 4 figs.