Window Functions and Their Applications in Signal Processing


Book Description

Window functions—otherwise known as weighting functions, tapering functions, or apodization functions—are mathematical functions that are zero-valued outside the chosen interval. They are well established as a vital part of digital signal processing. Window Functions and their Applications in Signal Processing presents an exhaustive and detailed account of window functions and their applications in signal processing, focusing on the areas of digital spectral analysis, design of FIR filters, pulse compression radar, and speech signal processing. Comprehensively reviewing previous research and recent developments, this book: Provides suggestions on how to choose a window function for particular applications Discusses Fourier analysis techniques and pitfalls in the computation of the DFT Introduces window functions in the continuous-time and discrete-time domains Considers two implementation strategies of window functions in the time- and frequency domain Explores well-known applications of window functions in the fields of radar, sonar, biomedical signal analysis, audio processing, and synthetic aperture radar




Signals and Systems Using MATLAB


Book Description

Signals and Systems Using MATLAB, Third Edition, features a pedagogically rich and accessible approach to what can commonly be a mathematically dry subject. Historical notes and common mistakes combined with applications in controls, communications and signal processing help students understand and appreciate the usefulness of the techniques described in the text. This new edition features more end-of-chapter problems, new content on two-dimensional signal processing, and discussions on the state-of-the-art in signal processing. - Introduces both continuous and discrete systems early, then studies each (separately) in-depth - Contains an extensive set of worked examples and homework assignments, with applications for controls, communications, and signal processing - Begins with a review on all the background math necessary to study the subject - Includes MATLAB® applications in every chapter




Digital Signal Processing Using MATLAB for Students and Researchers


Book Description

Quickly Engages in Applying Algorithmic Techniques to Solve Practical Signal Processing Problems With its active, hands-on learning approach, this text enables readers to master the underlying principles of digital signal processing and its many applications in industries such as digital television, mobile and broadband communications, and medical/scientific devices. Carefully developed MATLAB® examples throughout the text illustrate the mathematical concepts and use of digital signal processing algorithms. Readers will develop a deeper understanding of how to apply the algorithms by manipulating the codes in the examples to see their effect. Moreover, plenty of exercises help to put knowledge into practice solving real-world signal processing challenges. Following an introductory chapter, the text explores: Sampled signals and digital processing Random signals Representing signals and systems Temporal and spatial signal processing Frequency analysis of signals Discrete-time filters and recursive filters Each chapter begins with chapter objectives and an introduction. A summary at the end of each chapter ensures that one has mastered all the key concepts and techniques before progressing in the text. Lastly, appendices listing selected web resources, research papers, and related textbooks enable the investigation of individual topics in greater depth. Upon completion of this text, readers will understand how to apply key algorithmic techniques to address practical signal processing problems as well as develop their own signal processing algorithms. Moreover, the text provides a solid foundation for evaluating and applying new digital processing signal techniques as they are developed.




Intuitive Probability and Random Processes using MATLAB®


Book Description

Intuitive Probability and Random Processes using MATLAB® is an introduction to probability and random processes that merges theory with practice. Based on the author’s belief that only "hands-on" experience with the material can promote intuitive understanding, the approach is to motivate the need for theory using MATLAB examples, followed by theory and analysis, and finally descriptions of "real-world" examples to acquaint the reader with a wide variety of applications. The latter is intended to answer the usual question "Why do we have to study this?" Other salient features are: *heavy reliance on computer simulation for illustration and student exercises *the incorporation of MATLAB programs and code segments *discussion of discrete random variables followed by continuous random variables to minimize confusion *summary sections at the beginning of each chapter *in-line equation explanations *warnings on common errors and pitfalls *over 750 problems designed to help the reader assimilate and extend the concepts Intuitive Probability and Random Processes using MATLAB® is intended for undergraduate and first-year graduate students in engineering. The practicing engineer as well as others having the appropriate mathematical background will also benefit from this book. About the Author Steven M. Kay is a Professor of Electrical Engineering at the University of Rhode Island and a leading expert in signal processing. He has received the Education Award "for outstanding contributions in education and in writing scholarly books and texts..." from the IEEE Signal Processing society and has been listed as among the 250 most cited researchers in the world in engineering.




A First Course in Fourier Analysis


Book Description

This book provides a meaningful resource for applied mathematics through Fourier analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions and shows how these mathematical ideas can be used to study sampling theory, PDEs, probability, diffraction, musical tones, and wavelets. The book contains an unusually complete presentation of the Fourier transform calculus. It uses concepts from calculus to present an elementary theory of generalized functions. FT calculus and generalized functions are then used to study the wave equation, diffusion equation, and diffraction equation. Real-world applications of Fourier analysis are described in the chapter on musical tones. A valuable reference on Fourier analysis for a variety of students and scientific professionals, including mathematicians, physicists, chemists, geologists, electrical engineers, mechanical engineers, and others.







Signal Processing for Neuroscientists


Book Description

Signal Processing for Neuroscientists introduces analysis techniques primarily aimed at neuroscientists and biomedical engineering students with a reasonable but modest background in mathematics, physics, and computer programming. The focus of this text is on what can be considered the 'golden trio' in the signal processing field: averaging, Fourier analysis, and filtering. Techniques such as convolution, correlation, coherence, and wavelet analysis are considered in the context of time and frequency domain analysis. The whole spectrum of signal analysis is covered, ranging from data acquisition to data processing; and from the mathematical background of the analysis to the practical application of processing algorithms. Overall, the approach to the mathematics is informal with a focus on basic understanding of the methods and their interrelationships rather than detailed proofs or derivations. One of the principle goals is to provide the reader with the background required to understand the principles of commercially available analyses software, and to allow him/her to construct his/her own analysis tools in an environment such as MATLAB®. - Multiple color illustrations are integrated in the text - Includes an introduction to biomedical signals, noise characteristics, and recording techniques - Basics and background for more advanced topics can be found in extensive notes and appendices - A Companion Website hosts the MATLAB scripts and several data files: http://www.elsevierdirect.com/companion.jsp?ISBN=9780123708670




MATLAB for Neuroscientists


Book Description

MATLAB for Neuroscientists serves as the only complete study manual and teaching resource for MATLAB, the globally accepted standard for scientific computing, in the neurosciences and psychology. This unique introduction can be used to learn the entire empirical and experimental process (including stimulus generation, experimental control, data collection, data analysis, modeling, and more), and the 2nd Edition continues to ensure that a wide variety of computational problems can be addressed in a single programming environment. This updated edition features additional material on the creation of visual stimuli, advanced psychophysics, analysis of LFP data, choice probabilities, synchrony, and advanced spectral analysis. Users at a variety of levels—advanced undergraduates, beginning graduate students, and researchers looking to modernize their skills—will learn to design and implement their own analytical tools, and gain the fluency required to meet the computational needs of neuroscience practitioners. - The first complete volume on MATLAB focusing on neuroscience and psychology applications - Problem-based approach with many examples from neuroscience and cognitive psychology using real data - Illustrated in full color throughout - Careful tutorial approach, by authors who are award-winning educators with strong teaching experience




Digital Signal Processing with Matlab Examples, Volume 2


Book Description

This is the second volume in a trilogy on modern Signal Processing. The three books provide a concise exposition of signal processing topics, and a guide to support individual practical exploration based on MATLAB programs. This second book focuses on recent developments in response to the demands of new digital technologies. It is divided into two parts: the first part includes four chapters on the decomposition and recovery of signals, with special emphasis on images. In turn, the second part includes three chapters and addresses important data-based actions, such as adaptive filtering, experimental modeling, and classification.