The Isomorphism Problem in Coxeter Groups


Book Description

The book is the first to give a comprehensive overview of the techniques and tools currently being used in the study of combinatorial problems in Coxeter groups. It is self-contained, and accessible even to advanced undergraduate students of mathematics.The primary purpose of the book is to highlight approximations to the difficult isomorphism problem in Coxeter groups. A number of theorems relating to this problem are stated and proven. Most of the results addressed here concern conditions which can be seen as varying degrees of uniqueness of representations of Coxeter groups. Throughout the investigation, the readers are introduced to a large number of tools in the theory of Coxeter groups, drawn from dozens of recent articles by prominent researchers in geometric and combinatorial group theory, among other fields. As the central problem of the book may in fact be solved soon, the book aims to go further, providing the readers with many techniques that can be used to answer more general questions. The readers are challenged to practice those techniques by solving exercises, a list of which concludes each chapter.




Groups of Exceptional Type, Coxeter Groups and Related Geometries


Book Description

The book deals with fundamental structural aspects of algebraic and simple groups, Coxeter groups and the related geometries and buildings. All contributing authors are very active researchers in the topics related to the theme of the book. Some of the articles provide the latest developments in the subject; some provide an overview of the current status of some important problems in this area; some survey an area highlighting the current developments; and some provide an exposition of an area to collect problems and conjectures. It is hoped that these articles would be helpful to a beginner to start independent research on any of these topics, as well as to an expert to know some of the latest developments or to consider some problems for investigation.




The Coxeter Legacy


Book Description

This collection of essays on the legacy of mathematican Donald Coxeter is a mixture of surveys, updates, history, storytelling and personal memories covering both applied and abstract maths. Subjects include: polytopes, Coxeter groups, equivelar polyhedra, Ceva's theorum, and Coxeter and the artists.




The Geometry and Topology of Coxeter Groups. (LMS-32)


Book Description

The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.




Aspects Of Infinite Groups: A Festschrift In Honor Of Anthony Gaglione


Book Description

This book is a festschrift in honor of Professor Anthony Gaglione's sixtieth birthday. This volume presents an excellent mix of research and expository articles on various aspects of infinite group theory. The papers give a broad overview of present research in infinite group theory in general, and combinatorial group theory and non-Abelian group-based cryptography in particular. They also pinpoint the interactions between combinatorial group theory and mathematical logic, especially model theory.




Combinatorics of Coxeter Groups


Book Description

Includes a rich variety of exercises to accompany the exposition of Coxeter groups Coxeter groups have already been exposited from algebraic and geometric perspectives, but this book will be presenting the combinatorial aspects of Coxeter groups




Groups - Korea 1988


Book Description

These proceedings include selected and refereed original papers; most are research papers, a few are comprehensive survey articles.




The Geometry and Topology of Coxeter Groups


Book Description

The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.




Kazhdan-Lusztig Cells with Unequal Parameters


Book Description

This monograph provides a comprehensive introduction to the Kazhdan-Lusztig theory of cells in the broader context of the unequal parameter case. Serving as a useful reference, the present volume offers a synthesis of significant advances made since Lusztig’s seminal work on the subject was published in 2002. The focus lies on the combinatorics of the partition into cells for general Coxeter groups, with special attention given to induction methods, cellular maps and the role of Lusztig's conjectures. Using only algebraic and combinatorial methods, the author carefully develops proofs, discusses open conjectures, and presents recent research, including a chapter on the action of the cactus group. Kazhdan-Lusztig Cells with Unequal Parameters will appeal to graduate students and researchers interested in related subject areas, such as Lie theory, representation theory, and combinatorics of Coxeter groups. Useful examples and various exercises make this book suitable for self-study and use alongside lecture courses. Information for readers: The character {\mathbb{Z}} has been corrupted in the print edition of this book and appears incorrectly with a diagonal line running through the symbol.




Handbook of Teichmüller Theory


Book Description

The subject of this handbook is Teichmuller theory in a wide sense, namely the theory of geometric structures on surfaces and their moduli spaces. This includes the study of vector bundles on these moduli spaces, the study of mapping class groups, the relation with $3$-manifolds, the relation with symmetric spaces and arithmetic groups, the representation theory of fundamental groups, and applications to physics. Thus the handbook is a place where several fields of mathematics interact: Riemann surfaces, hyperbolic geometry, partial differential equations, several complex variables, algebraic geometry, algebraic topology, combinatorial topology, low-dimensional topology, theoretical physics, and others. This confluence of ideas toward a unique subject is a manifestation of the unity and harmony of mathematics. This volume contains surveys on the fundamental theory as well as surveys on applications to and relations with the fields mentioned above. It is written by leading experts in these fields. Some of the surveys contain classical material, while others present the latest developments of the theory as well as open problems. This volume is divided into the following four sections: The metric and the analytic theory The group theory The algebraic topology of mapping class groups and moduli spaces Teichmuller theory and mathematical physics This handbook is addressed to graduate students and researchers in all the fields mentioned.