The Julius Petersen Graph Theory Centennial


Book Description

Julius Petersen's paper, Die Theorie der regulären graphs in Acta Mathematica, volume 15 (1891), stands at the beginning of graph theory as we know it today. The Danish group of graph theorists decided in 1985 to mark the 150th birthday of Petersen in 1989, as well as the centennial of his paper. It was felt that the occasion called for a presentation of Petersen's famous paper in its historical context and, in a wider sense, of Petersen's life and work as a whole. However, the readily available information about Julius Petersen amounted to very little (not even a full bibliography existed) and virtually nothing was known about the circumstances that led him to write his famous paper. The study of Petersen's life and work has resulted in several papers, in particular a biography, a bibliography, an annotated edition of the letters surrounding Petersen's paper of 1891, an analysis of Petersen's paper and an annotated edition of parts of Petersen's correspondence with Sylow on Galois theory. The first four of these papers, together with a survey of matching theory, form the first part of this book. In addition to these five special papers, there are papers submitted in the celebration of the Petersen centennial.




Mathematical Reviews


Book Description




Computational Molecular Biology


Book Description

This volume contains papers demonstrating the variety and richness of computational problems motivated by molecular biology. The application areas within biology that give rise to the problems studied in these papers include solid molecular modeling, sequence comparison, phylogeny, evolution, mapping, DNA chips, protein folding and 2D gel technology. The mathematical techniques used are algorithmics, combinatorics, optimization, probability, graph theory, complexity and applied mathematics. This is the fourth volume in the Discrete Applied Mathematics series on computational molecular biology, which is devoted to combinatorial and algorithmic techniques in computational molecular biology. This series publishes novel research results on the mathematical and algorithmic foundations of the inherently discrete aspects of computational biology. Key features: . protein folding . phylogenetic inference . 2-dimensional gel analysis . graphical models for sequencing by hybridisation . dynamic visualization of molecular surfaces . problems and algorithms in sequence alignment This book is a reprint of Discrete Applied Mathematics Volume 127, Number 1.




Using the Borsuk-Ulam Theorem


Book Description

To the uninitiated, algebraic topology might seem fiendishly complex, but its utility is beyond doubt. This brilliant exposition goes back to basics to explain how the subject has been used to further our understanding in some key areas. A number of important results in combinatorics, discrete geometry, and theoretical computer science have been proved using algebraic topology. While the results are quite famous, their proofs are not so widely understood. This book is the first textbook treatment of a significant part of these results. It focuses on so-called equivariant methods, based on the Borsuk-Ulam theorem and its generalizations. The topological tools are intentionally kept on a very elementary level. No prior knowledge of algebraic topology is assumed, only a background in undergraduate mathematics, and the required topological notions and results are gradually explained.







The Cumulative Book Index


Book Description

A world list of books in the English language.







Digraphs


Book Description

The study of directed graphs (digraphs) has developed enormously over recent decades, yet the results are rather scattered across the journal literature. This is the first book to present a unified and comprehensive survey of the subject. In addition to covering the theoretical aspects, the authors discuss a large number of applications and their generalizations to topics such as the traveling salesman problem, project scheduling, genetics, network connectivity, and sparse matrices. Numerous exercises are included. For all graduate students, researchers and professionals interested in graph theory and its applications, this book will be essential reading.




Combinatorial Nullstellensatz


Book Description

Combinatorial Nullstellensatz is a novel theorem in algebra introduced by Noga Alon to tackle combinatorial problems in diverse areas of mathematics. This book focuses on the applications of this theorem to graph colouring. A key step in the applications of Combinatorial Nullstellensatz is to show that the coefficient of a certain monomial in the expansion of a polynomial is nonzero. The major part of the book concentrates on three methods for calculating the coefficients: Alon-Tarsi orientation: The task is to show that a graph has an orientation with given maximum out-degree and for which the number of even Eulerian sub-digraphs is different from the number of odd Eulerian sub-digraphs. In particular, this method is used to show that a graph whose edge set decomposes into a Hamilton cycle and vertex-disjoint triangles is 3-choosable, and that every planar graph has a matching whose deletion results in a 4-choosable graph. Interpolation formula for the coefficient: This method is in particular used to show that toroidal grids of even order are 3-choosable, r-edge colourable r-regular planar graphs are r-edge choosable, and complete graphs of order p+1, where p is a prime, are p-edge choosable. Coefficients as the permanents of matrices: This method is in particular used in the study of the list version of vertex-edge weighting and to show that every graph is (2,3)-choosable. It is suited as a reference book for a graduate course in mathematics.




Martin Kneser Collected Works


Book Description

This volume presents the collection of mathematical articles by Martin Kneser, reprinted in the original language – mostly German –, including one yet unpublished. Moreover, also included is an article by Raman Parimala, discussing Kneser’s work concerning algebraic groups and the Hasse principle, which has been written especially for this volume, as well as an article by Rudolf Scharlau about Kneser’s work on quadratic forms, published elsewhere before. Another commentary article, written by Günter M. Ziegler especially for this volume, describes the astounding influence on the field of combinatorics of what was published as “Aufgabe 360” and its subsequent solution in 1955 resp. 1957 in the “Jahresbericht der Deutschen Mathematiker-Vereinigung”. However, as the titles of the articles show, Kneser’s mathematical interests were much broader, which is beautifully discussed in an obituary by Ulrich Stuhler, included as well in this volume.