The Law of Large Numbers


Book Description

Apply this incredible law to every area of your life. While the law of large numbers has been applied to fields such as math and science for several decades, its power has just recently begun to be applied to the fields of business and personal growth. Today, people from all walks of life are using the law of large numbers to achieve their highest objectives, with great confidence and complete peace of mind. Now, award-winning speaker and personal performance expert Dr. Gary Goodman has created a full-scale program showing you how to apply this incredible law to every area of your life. Gary shares with you the amazing power this simple philosophy has brought to his life and the hundreds of people he has consulted with. According to Gary, "If you stand second in line in enough lines, sooner or later, even by sheer luck, you are bound to reach the top in at least one, if not several of those lines, over time." Learn: • A new process of setting clear goals in every major area of your life • How to gain the ability to focus on positive outcomes in all situations. • The law of large numbers approach to being more successful in any sales position. • How to become an expert communicator by expanding your vocabulary with the law of large numbers. • A clear, concise action plan for how you can develop your own personal law of large numbers strategy and apply it to any area of your life. • A 31-day action plan to stay positive every day and stay on track with your law of large numbers campaign. • And much, much more!




The Laws of Large Numbers


Book Description

The Law of Large Numbers deals with three types of law of large numbers according to the following convergences: stochastic, mean, and convergence with probability 1. The book also investigates the rate of convergence and the laws of the iterated logarithm. It reviews measure theory, probability theory, stochastic processes, ergodic theory, orthogonal series, Huber spaces, Banach spaces, as well as the special concepts and general theorems of the laws of large numbers. The text discusses the laws of large numbers of different classes of stochastic processes, such as independent random variables, orthogonal random variables, stationary sequences, symmetrically dependent random variables and their generalizations, and also Markov chains. It presents other laws of large numbers for subsequences of sequences of random variables, including some general laws of large numbers which are not related to any concrete class of stochastic processes. The text cites applications of the theorems, as in numbers theory, statistics, and information theory. The text is suitable for mathematicians, economists, scientists, statisticians, or researchers involved with the probability and relative frequency of large numbers.




Probability


Book Description

This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.




That's Maths


Book Description

From atom bombs to rebounding slinkies, open your eyes to the mathematical magic in the everyday. Mathematics isn't just for academics and scientists, a fact meteorologist and blogger Peter Lynch has spent the past several years proving through his Irish Times newspaper column and blog, That's Maths.Here, he shows how maths is all around us, with chapters on the beautiful equations behind designing a good concert venue, predicting the stock market and modelling the atom bomb, as well as playful meditations on everything from coin-stacking to cartography. If you left school thinking maths was boring, think again!




Introductory Business Statistics 2e


Book Description

Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.




Large Deviations in Physics


Book Description

This book reviews the basic ideas of the Law of Large Numbers with its consequences to the deterministic world and the issue of ergodicity. Applications of Large Deviations and their outcomes to Physics are surveyed. The book covers topics encompassing ergodicity and its breaking and the modern applications of Large deviations to equilibrium and non-equilibrium statistical physics, disordered and chaotic systems, and turbulence.




Game-Theoretic Foundations for Probability and Finance


Book Description

Game-theoretic probability and finance come of age Glenn Shafer and Vladimir Vovk’s Probability and Finance, published in 2001, showed that perfect-information games can be used to define mathematical probability. Based on fifteen years of further research, Game-Theoretic Foundations for Probability and Finance presents a mature view of the foundational role game theory can play. Its account of probability theory opens the way to new methods of prediction and testing and makes many statistical methods more transparent and widely usable. Its contributions to finance theory include purely game-theoretic accounts of Ito’s stochastic calculus, the capital asset pricing model, the equity premium, and portfolio theory. Game-Theoretic Foundations for Probability and Finance is a book of research. It is also a teaching resource. Each chapter is supplemented with carefully designed exercises and notes relating the new theory to its historical context. Praise from early readers “Ever since Kolmogorov's Grundbegriffe, the standard mathematical treatment of probability theory has been measure-theoretic. In this ground-breaking work, Shafer and Vovk give a game-theoretic foundation instead. While being just as rigorous, the game-theoretic approach allows for vast and useful generalizations of classical measure-theoretic results, while also giving rise to new, radical ideas for prediction, statistics and mathematical finance without stochastic assumptions. The authors set out their theory in great detail, resulting in what is definitely one of the most important books on the foundations of probability to have appeared in the last few decades.” – Peter Grünwald, CWI and University of Leiden “Shafer and Vovk have thoroughly re-written their 2001 book on the game-theoretic foundations for probability and for finance. They have included an account of the tremendous growth that has occurred since, in the game-theoretic and pathwise approaches to stochastic analysis and in their applications to continuous-time finance. This new book will undoubtedly spur a better understanding of the foundations of these very important fields, and we should all be grateful to its authors.” – Ioannis Karatzas, Columbia University




High-Dimensional Probability


Book Description

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.




The Politics of Large Numbers


Book Description

Begins with study of history of statistics, and shows how the evolution of modern statistics has been inextricably bound up with the knowledge and power of governments.




Introduction to Probability


Book Description

This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.