The Logistic Map and the Route to Chaos


Book Description

Pierre-Francois Verhulst, with his seminal work using the logistic map to describe population growth and saturation, paved the way for the many applications of this tool in modern mathematics, physics, chemistry, biology, economics and sociology. Indeed nowadays the logistic map is considered a useful and paradigmatic showcase for the route leading to chaos. This volume gathers contributions from some of the leading specialists in the field to present a state-of-the art view of the many ramifications of the developments initiated by Verhulst over a century ago.




The Logistic Map and the Route to Chaos


Book Description

Pierre-Francois Verhulst, with his seminal work using the logistic map to describe population growth and saturation, paved the way for the many applications of this tool in modern mathematics, physics, chemistry, biology, economics and sociology. Indeed nowadays the logistic map is considered a useful and paradigmatic showcase for the route leading to chaos. This volume gathers contributions from some of the leading specialists in the field to present a state-of-the art view of the many ramifications of the developments initiated by Verhulst over a century ago.




Introduction to Chaos


Book Description

This book focuses on explaining the fundamentals of the physics and mathematics of chaotic phenomena by studying examples from one-dimensional maps and simple differential equations. It is helpful for postgraduate students and researchers in mathematics, physics and other areas of science.




Introduction to Chaos and Coherence


Book Description

This book provides an introduction to the theory of chaotic systems and demonstrates how chaos and coherence are interwoven in some of the models exhibiting deterministic chaos. It is based on the lecture notes for a short course in dynamical systems theory given at the University of Oslo.




Progress in Optics


Book Description

A collection of comprehensive reviews in the field of optics. The first article presents a review of recent investifations concerning multiphoton ionization of atoms in intense radiation fields and includes discussions on above threshold ionization, generation of higher-order harmonics of an intense field interacting with a gaseous medium and the role of chaotic dynamics in the interaction of atoms with monochromatic radiation. A tutorial section on chaotic behaviour is also included. The second article presents a review of modern developments regarding properties of light diffracted by gratings. Both a phemonenological treatment and a macroscopic analysis are presented. The following article reviews developments relating to optical amplifiers, especially those which use semiconductors and optical fibres. The article covers the operating principles, fabrication and performance characteristics. The next article reviews recent research on a promising new class of neural networks, the so-called adaptive multilayer optical networks. Although still in the early states of developments, these devices offer the possibility of implementing optical interconnections in three dimensions and they can be functionally equivalent to several thousand chips. The fifth article deals with idealized but rather useful models of some atomic systems, namely two-level and four-level atoms. The analogy between a quantum two-level atom and a classical model consisting of two coupled optical modes is discussed. Extension of these considerations to optical band structure and to four-level systems is also treated. The concluding article deals thoroughly with free electron lasers in a physical way, while minimum attention is paid to organic generalities and mathematical rigour.




Galileo Unbound


Book Description

Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.




Chaos Theory Tamed


Book Description

This text aims to bridge the gap between non-mathematical popular treatments and the distinctly mathematical publications that non- mathematicians find so difficult to penetrate. The author provides understandable derivations or explanations of many key concepts, such as Kolmogrov-Sinai entropy, dimensions, Fourier analysis, and Lyapunov exponents.




Chaos in Dynamical Systems


Book Description

Over the past two decades scientists, mathematicians, and engineers have come to understand that a large variety of systems exhibit complicated evolution with time. This complicated behavior is known as chaos. In the new edition of this classic textbook Edward Ott has added much new material and has significantly increased the number of homework problems. The most important change is the addition of a completely new chapter on control and synchronization of chaos. Other changes include new material on riddled basins of attraction, phase locking of globally coupled oscillators, fractal aspects of fluid advection by Lagrangian chaotic flows, magnetic dynamos, and strange nonchaotic attractors. This new edition will be of interest to advanced undergraduates and graduate students in science, engineering, and mathematics taking courses in chaotic dynamics, as well as to researchers in the subject.




Bifurcation Control


Book Description

Bifurcation control refers to the task of designing a controller that can modify the bifurcation properties of a given nonlinear system, so as to achieve some desirable dynamical behaviors. There exists no similar control theory-oriented book available in the market that is devoted to the subject of bifurcation control, written by control engineers for control engineers. World-renowned leading experts in the field provide their state-of-the-art survey about the extensive research that has been done over the last few years in this subject. The book is not only aimed at active researchers in the field of bifurcation control and its applications, but also at a general audience in related fields.




Elements of Applied Bifurcation Theory


Book Description

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.