The Lure of Bacterial Genetics


Book Description

A unique, rigorous scientific approach to understanding bacterial genetics • Provides a complete overview of the entire field of bacterial genetics, helping the reader to understand how the field has evolved. • Inspires readers by providing an opportunity to learn from John Roth’s achievements and contributions to bacterial genetics. • Offers valuable lessons in the history and science of bacterial genetics by providing a behind the scenes look at some of the most important triumphs and mishaps that have occurred on the path to discovery.




The Lure of Bacterial Genetics


Book Description

This book has been written and edited by colleagues and former students of John Roth, many of whom are also leaders and pioneers in the field of bacterial genetics. It provides a complete overview of the entire field of bacterial genetics, helping the reader to understand how the field has evolved through the years. Moreover, the book enables everyone to be inspired by and to learn from John Roth's achievements and contributions to bacterial genetics.




Snyder and Champness Molecular Genetics of Bacteria


Book Description

The single most comprehensive and authoritative textbook on bacterial molecular genetics Snyder & Champness Molecular Genetics of Bacteria is a new edition of a classic text, updated to address the massive advances in the field of bacterial molecular genetics and retitled as homage to the founding authors. In an era experiencing an avalanche of new genetic sequence information, this updated edition presents important experiments and advanced material relevant to current applications of molecular genetics, including conclusions from and applications of genomics; the relationships among recombination, replication, and repair and the importance of organizing sequences in DNA; the mechanisms of regulation of gene expression; the newest advances in bacterial cell biology; and the coordination of cellular processes during the bacterial cell cycle. The topics are integrated throughout with biochemical, genomic, and structural information, allowing readers to gain a deeper understanding of modern bacterial molecular genetics and its relationship to other fields of modern biology. Although the text is centered on the most-studied bacteria, Escherichia coli and Bacillus subtilis, many examples are drawn from other bacteria of experimental, medical, ecological, and biotechnological importance. The book's many useful features include Text boxes to help students make connections to relevant topics related to other organisms, including humans A summary of main points at the end of each chapter Questions for discussion and independent thought A list of suggested readings for background and further investigation in each chapter Fully illustrated with detailed diagrams and photos in full color A glossary of terms highlighted in the text While intended as an undergraduate or beginning graduate textbook, Molecular Genetics of Bacteria is an invaluable reference for anyone working in the fields of microbiology, genetics, biochemistry, bioengineering, medicine, molecular biology, and biotechnology. "This is a marvelous textbook that is completely up-to-date and comprehensive, but not overwhelming. The clear prose and excellent figures make it ideal for use in teaching bacterial molecular genetics." —Caroline Harwood, University of Washington




Encyclopedia of Biodiversity


Book Description

The 7-volume Encyclopedia of Biodiversity, Second Edition maintains the reputation of the highly regarded original, presenting the most current information available in this globally crucial area of research and study. It brings together the dimensions of biodiversity and examines both the services it provides and the measures to protect it. Major themes of the work include the evolution of biodiversity, systems for classifying and defining biodiversity, ecological patterns and theories of biodiversity, and an assessment of contemporary patterns and trends in biodiversity. The science of biodiversity has become the science of our future. It is an interdisciplinary field spanning areas of both physical and life sciences. Our awareness of the loss of biodiversity has brought a long overdue appreciation of the magnitude of this loss and a determination to develop the tools to protect our future. Second edition includes over 100 new articles and 226 updated articles covering this multidisciplinary field— from evolution to habits to economics, in 7 volumes The editors of this edition are all well respected, instantly recognizable academics operating at the top of their respective fields in biodiversity research; readers can be assured that they are reading material that has been meticulously checked and reviewed by experts Approximately 1,800 figures and 350 tables complement the text, and more than 3,000 glossary entries explain key terms




The Social Biology of Microbial Communities


Book Description

Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.




Brenner's Encyclopedia of Genetics


Book Description

The explosion of the field of genetics over the last decade, with the new technologies that have stimulated research, suggests that a new sort of reference work is needed to keep pace with such a fast-moving and interdisciplinary field. Brenner's Encyclopedia of Genetics, Second Edition, Seven Volume Set, builds on the foundation of the first edition by addressing many of the key subfields of genetics that were just in their infancy when the first edition was published. The currency and accessibility of this foundational content will be unrivalled, making this work useful for scientists and non-scientists alike. Featuring relatively short entries on genetics topics written by experts in that topic, Brenner's Encyclopedia of Genetics, Second Edition, Seven Volume Set provides an effective way to quickly learn about any aspect of genetics, from Abortive Transduction to Zygotes. Adding to its utility, the work provides short entries that briefly define key terms, and a guide to additional reading and relevant websites for further study. Many of the entries include figures to explain difficult concepts. Key terms in related areas such as biochemistry, cell, and molecular biology are also included, and there are entries that describe historical figures in genetics, providing insights into their careers and discoveries. This 7-volume set represents a 25% expansion from the first edition, with over 1600 articles encompassing this burgeoning field Thoroughly up-to-date, with many new topics and subfields covered that were in their infancy or not inexistence at the time of the first edition. Timely coverage of emergent areas such as epigenetics, personalized genomic medicine, pharmacogenetics, and genetic enhancement technologies Interdisciplinary and global in its outlook, as befits the field of genetics Brief articles, written by experts in the field, which not only discuss, define, and explain key elements of the field, but also provide definition of key terms, suggestions for further reading, and biographical sketches of the key people in the history of genetics




Shrinking the Cat


Book Description

In this timely and controversial work, Sue Hubbell contends that the concept of genetic engineering is anything but new, for humans have been tinkering with genetics for centuries. Focusing on four specific examples -- corn, silkworms, domestic cats, and apples -- she traces the histories of species that have been fundamentally altered over the centuries by the whims and needs of people.




Bacterial and Archaeal Motility


Book Description

This detailed volume presents cutting-edge research protocols to study the structure and dynamics of bacterial and archaeal motility systems using bacterial genetics, molecular biology, biochemistry, biophysics, structural biology, cell biology, microscopy imaging, and molecular dynamics simulation. Beginning with a section on bacterial flagellar protein export and assembly, the book continues with chapters covering flagella-driven motility of bacteria, archaella-driven motility of archaea, type IV-driven twitching motility of bacteria, as well as adhesion-based gliding motility of bacteria and other unique motility systems. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and thorough, Bacterial and Archaeal Motility is the ideal reference for researchers working in this vital area of microbiology.




Epigenetics of Infectious Diseases


Book Description

The present volume of Epigenetics and Human Health is devoted to the patho-epigenetics of viral and microbial infections, an exiting new field of disease-related epigenetic research. As recognized during the past years, epigenetic reprogramming of pathogen and host genome functions – the latter frequently induced by pathogens – plays an important role in many infectious processes. Beyond their immediate relevance for pathogen proliferation and obligatorily associated symptoms, such alterations frequently contribute to severe additional complications, such as the development of immunodeficiency, cancer and various chronic disorders. This holds in particular for epigenetic dysregulation of host gene expression induced by latent infections. The present book summarizes current knowledge of the mechanisms underlying epigenetic changes caused by viral, bacterial, fungal and protozoan infections and their impact on human health.




Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 1


Book Description

This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.