Book Description
A conclusion to the trilogy that includes "The Map of Time" and "The Map of the Sky" finds its mysterious protagonist seeking an obscure magical book that will help him confess a dangerous secret to a lost loved one.
Author : FĂ©lix J. Palma
Publisher : Simon and Schuster
Page : 4 pages
File Size : 18,99 MB
Release : 2016-08-02
Category : Fiction
ISBN : 1451688199
A conclusion to the trilogy that includes "The Map of Time" and "The Map of the Sky" finds its mysterious protagonist seeking an obscure magical book that will help him confess a dangerous secret to a lost loved one.
Author : Kathleen T. Alligood
Publisher : Springer Science & Business Media
Page : 612 pages
File Size : 26,97 MB
Release : 2006-04-06
Category : Mathematics
ISBN : 0387224920
Developed and class-tested by a distinguished team of authors at two universities, this text is intended for courses in nonlinear dynamics in either mathematics or physics. The only prerequisites are calculus, differential equations, and linear algebra. Along with discussions of the major topics, including discrete dynamical systems, chaos, fractals, nonlinear differential equations and bifurcations, the text also includes Lab Visits -- short reports that illustrate relevant concepts from the physical, chemical and biological sciences. There are Computer Experiments throughout the text that present opportunities to explore dynamics through computer simulations, designed for use with any software package. And each chapter ends with a Challenge, guiding students through an advanced topic in the form of an extended exercise.
Author : Richard Kautz
Publisher : Oxford University Press
Page : 384 pages
File Size : 27,86 MB
Release : 2011
Category : Mathematics
ISBN : 0199594570
One CD-ROM disc in pocket.
Author : Dean J. Driebe
Publisher : Springer Science & Business Media
Page : 173 pages
File Size : 12,52 MB
Release : 2013-04-17
Category : Science
ISBN : 9401716285
I am very pleased and privileged to write a short foreword for the monograph of Dean Driebe: Fully Chaotic Maps and Broken Time Symmetry. Despite the technical title this book deals with a problem of fundamental importance. To appreciate its meaning we have to go back to the tragic struggle that was initiated by the work of the great theoretical physicist Ludwig Boltzmann in the second half of the 19th century. Ludwig Boltzmann tried to emulate in physics what Charles Darwin had done in biology and to formulate an evolutionary approach in which past and future would play different roles. Boltzmann's work has lead to innumerable controversies as the laws of classical mechanics (as well as the laws of quan tum mechanics) as traditionally formulated imply symmetry between past and future. As is well known, Albert Einstein often stated that "Time is an illusion". Indeed, as long as dynamics is associated with trajectories satisfy ing the equations of classical mechanics, explaining irreversibility in terms of trajectories appears, as Henri Poincare concluded, as a logical error. After a long struggle, Boltzmann acknowledged his defeat and introduced a probabil ity description in which all microscopic states are supposed to have the same a priori probability. Irreversibility would then be due to the imperfection of our observations associated only with the "macroscopic" state described by temperature, pressure and other similar parameters. Irreversibility then appears devoid of any fundamental significance. However today this position has become untenable.
Author : Shishir Kumar Shandilya
Publisher : Springer Nature
Page : 325 pages
File Size : 19,87 MB
Release : 2024-01-15
Category : Technology & Engineering
ISBN : 9819970814
This book introduces nature-inspired algorithms and their applications to modern cryptography. It helps the readers to get into the field of nature-based approaches to solve complex cryptographic issues. This book provides a comprehensive view of nature-inspired research which could be applied in cryptography to strengthen security. It will also explore the novel research directives such as Clever algorithms and immune-based cyber resilience. New experimented nature-inspired approaches are having enough potential to make a huge impact in the field of cryptanalysis. This book gives a lucid introduction to this exciting new field and will promote further research in this domain. The book discusses the current landscape of cryptography and nature-inspired research and will be helpful to prospective students and professionals to explore further.
Author : Khalid M. Hosny
Publisher : Springer Nature
Page : 271 pages
File Size : 20,72 MB
Release : 2020-02-28
Category : Technology & Engineering
ISBN : 3030387003
This comprehensive book is primarily intended for researchers, engineers, mathematicians and computer security specialists who are interested in multimedia security, steganography, encryption, and related research fields. It is also a valuable reference resource for postgraduate and senior undergraduate students who are studying multimedia, multimedia security, and information security, as well as for professionals in the IT industry.
Author : Marat Akhmet
Publisher : Springer Nature
Page : 233 pages
File Size : 43,51 MB
Release : 2020-01-01
Category : Mathematics
ISBN : 3030358542
The book is concerned with the concepts of chaos and fractals, which are within the scopes of dynamical systems, geometry, measure theory, topology, and numerical analysis during the last several decades. It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. This is the first time in the literature that the description of chaos is initiated from a single motion. Chaos is now placed on the line of oscillations, and therefore, it is a subject of study in the framework of the theories of dynamical systems and differential equations, as in this book. The techniques introduced in the book make it possible to develop continuous and discrete dynamics which admit fractals as points of trajectories as well as orbits themselves. To provide strong arguments for the genericity of chaos in the real and abstract universe, the concept of abstract similarity is suggested.
Author : Adel Ouannas
Publisher : World Scientific
Page : 218 pages
File Size : 22,62 MB
Release : 2023-02-13
Category : Science
ISBN : 9811271224
In the nineteenth-century, fractional calculus had its origin in extending differentiation and integration operators from the integer-order case to the fractional-order case. Discrete fractional calculus has recently become an important research topic, useful in various science and engineering applications. The first definition of the fractional-order discrete-time/difference operator was introduced in 1974 by Diaz and Osler, where such operator was derived by discretizing the fractional-order continuous-time operator. Successfully, several types of fractional-order difference operators have then been proposed and introduced through further generalizing numerous classical operators, motivating several researchers to publish extensively on a new class of systems, viz the nonlinear fractional-order discrete-time systems (or simply, the fractional-order maps), and their chaotic behaviors. This discovery of chaos in such maps, has led to novel control methods for effectively stabilizing their chaotic dynamics.The aims of this book are as follows:
Author : Daniel Braun
Publisher : Springer
Page : 139 pages
File Size : 19,25 MB
Release : 2003-07-01
Category : Science
ISBN : 3540409165
This overview of the state of the art of research in an exciting field mainly emphasizes the development of a semiclassical formalism that allows one to incorporate the effect of dissipation and decoherence in a precise, yet tractable way into the quantum mechanics of classically chaotic systems.
Author : Jan Awrejcewicz
Publisher : MDPI
Page : 172 pages
File Size : 44,80 MB
Release : 2019-10-16
Category : Science
ISBN : 3039216163
In order to measure and quantify the complex behavior of real-world systems, either novel mathematical approaches or modifications of classical ones are required to precisely predict, monitor, and control complicated chaotic and stochastic processes. Though the term of entropy comes from Greek and emphasizes its analogy to energy, today, it has wandered to different branches of pure and applied sciences and is understood in a rather rough way, with emphasis placed on the transition from regular to chaotic states, stochastic and deterministic disorder, and uniform and non-uniform distribution or decay of diversity. This collection of papers addresses the notion of entropy in a very broad sense. The presented manuscripts follow from different branches of mathematical/physical sciences, natural/social sciences, and engineering-oriented sciences with emphasis placed on the complexity of dynamical systems. Topics like timing chaos and spatiotemporal chaos, bifurcation, synchronization and anti-synchronization, stability, lumped mass and continuous mechanical systems modeling, novel nonlinear phenomena, and resonances are discussed.