The Mathematical Principles of Scale Relativity Physics


Book Description

The Mathematical Principles of Scale Relativity Physics: The Concept of Interpretation explores and builds upon the principles of Laurent Nottale’s scale relativity. The authors address a variety of problems encountered by researchers studying the dynamics of physical systems. It explores Madelung fluid from a wave mechanics point of view, showing that confinement and asymptotic freedom are the fundamental laws of modern natural philosophy. It then probes Nottale’s scale transition description, offering a sound mathematical principle based on continuous group theory. The book provides a comprehensive overview of the matter to the reader via a generalization of relativity, a theory of colors, and classical electrodynamics. Key Features: Develops the concept of scale relativity interpreted according to its initial definition enticed by the birth of wave and quantum mechanics Provides the fundamental equations necessary for interpretation of matter, describing the ensembles of free particles according to the concepts of confinement and asymptotic freedom Establishes a natural connection between the Newtonian forces and the Planck’s law from the point of view of space and time scale transition: both are expressions of invariance to scale transition The work will be of great interest to graduate students, doctoral candidates, and academic researchers working in mathematics and physics.




Scale Relativity and Fractal Space-time


Book Description

This book provides a comprehensive survey of the state-of-the-art in the development of the theory of scale relativity and fractal space-time. It suggests an original solution to the disunified nature of the classical-quantum transition in physical systems, enabling quantum mechanics to be based on the principle of relativity provided this principle is extended to scale transformations of the reference system. In the framework of such a newly-generalized relativity theory (including position, orientation, motion and now scale transformations), the fundamental laws of physics may be given a general form that goes beyond and integrates the classical and the quantum regimes. A related concern of this book is the geometry of space-time, which is described as being fractal and nondifferentiable. It collects and organizes theoretical developments and applications in many fields, including physics, mathematics, astrophysics, cosmology and life sciences.




Fractal Space-time and Microphysics


Book Description

This is the first detailed account of a new approach to microphysics based on two leading ideas: (i) the explicit dependence of physical laws on scale encountered in quantum physics, is the manifestation of a fundamental principle of nature, scale relativity. This generalizes Einstein's principle of (motion) relativity to scale transformations; (ii) the mathematical achievement of this principle needs the introduction of a nondifferentiable space-time varying with resolution, i.e. characterized by its fractal properties.The author discusses in detail reactualization of the principle of relativity and its application to scale transformations, physical laws which are explicitly scale dependent, and fractals as a new geometric description of space-time.




Physics for Mathematicians


Book Description




Relativity and Geometry


Book Description

Early in this century, it was shown that the new non-Newtonian physics -- known as Einstein's Special Theory of Relativity -- rested on a new, non-Euclidean geometry, which incorporated time and space into a unified "chronogeometric" structure. This high-level study elucidates the motivation and significance of the changes in physical geometry brought about by Einstein, in both the first and the second phase of Relativity. After a discussion of Newtonian principles and 19th-century views on electrodynamics and the aether, the author offers illuminating expositions of Einstein's electrodynamics of moving bodies, Minkowski spacetime, Einstein's quest for a theory of gravity, gravitational geometry, the concept of simultaneity, time and causality and other topics. An important Appendix -- designed to define spacetime curvature -- considers differentiable manifolds, fiber bundles, linear connections and useful formulae. Relativity continues to be a major focus of interest for physicists, mathematicians and philosophers of science. This highly regarded work offers them a rich, "historico-critical" exposition -- emphasizing geometrical ideas -- of the elements of the Special and General Theory of Relativity.




The Large Scale Structure of Space-Time


Book Description

Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.




Lecture Notes on the General Theory of Relativity


Book Description

This book collects lectures on the general theory of relativity given by Dr. Øyvind Grøn at the University of Oslo, Norway. This accessible text allows students to follow the deductions all the way throughout the book.




Numerical Relativity


Book Description

Aimed at students and researchers entering the field, this pedagogical introduction to numerical relativity will also interest scientists seeking a broad survey of its challenges and achievements. Assuming only a basic knowledge of classical general relativity, the book develops the mathematical formalism from first principles, and then highlights some of the pioneering simulations involving black holes and neutron stars, gravitational collapse and gravitational waves. The book contains 300 exercises to help readers master new material as it is presented. Numerous illustrations, many in color, assist in visualizing new geometric concepts and highlighting the results of computer simulations. Summary boxes encapsulate some of the most important results for quick reference. Applications covered include calculations of coalescing binary black holes and binary neutron stars, rotating stars, colliding star clusters, gravitational and magnetorotational collapse, critical phenomena, the generation of gravitational waves, and other topics of current physical and astrophysical significance.




The Theory of Scale Relativity


Book Description

Provides a comprehensive survey of the state-of-the-art in the development of the relativity theory of scales Transcends and integrates the classical and the quantum regimes Enables quantum mechanics to be based on the principle of relativity provided this principle is extended to scale transformations of the reference system Collects and organizes developments and applications from diverse fields for easy reference




Mathematical Problems of General Relativity I


Book Description

General relativity is a theory proposed by Einstein in 1915 as a unified theory of space, time and gravitation. It is based on and extends Newton's theory of gravitation as well as Newton's equations of motion. It is thus fundamentally rooted in classical mechanics. The theory can be seen as a development of Riemannian geometry, itself an extension of Gauss' intrinsic theory of curved surfaces in Euclidean space. The domain of application of the theory is astronomical systems. One of the mathematical methods analyzed and exploited in the present volume is an extension of Noether's fundamental principle connecting symmetries to conserved quantities. This is involved at a most elementary level in the very definition of the notion of hyperbolicity for an Euler-Lagrange system of partial differential equations. Another method, the study and systematic use of foliations by characteristic (null) hypersurfaces, is in the spirit of Roger Penrose's approach in his incompleteness theorem. The methods have applications beyond general relativity to problems in fluid mechanics and, more generally, to the mechanics and electrodynamics of continuous media. The book is intended for advanced students and researchers seeking an introduction to the methods and applications of general relativity.