The Mathematical Writings of Évariste Galois


Book Description

Before he died at the age of twenty, shot in a mysterious early-morning duel at the end of May 1832, Evariste Galois created mathematics that changed the direction of algebra. This book contains English translations of almost all the Galois material. The translations are presented alongside a new transcription of the original French and are enhanced by three levels of commentary. An introduction explains the context of Galois' work, the various publications in which it appears, and the vagaries of his manuscripts. Then there is a chapter in which the five mathematical articles published in his lifetime are reprinted. After that come the testamentary letter and the first memoir (in which Galois expounded on the ideas that led to Galois Theory), which are the most famous of the manuscripts. These are followed by the second memoir and other lesser known manuscripts. This book makes available to a wide mathematical and historical readership some of the most exciting mathematics of the first half of the nineteenth century, presented in its original form. The primary aim is to establish a text of what Galois wrote. The details of what he did, the proper evidence of his genius, deserve to be well understood and appreciated by mathematicians as well as historians of mathematics.




Evariste Galois 1811–1832


Book Description

Evariste Galois' short life was lived against the turbulent background of the restoration of the Bourbons to the throne of France, the 1830 revolution in Paris and the accession of Louis-Phillipe. This new and scrupulously researched biography of the founder of modern algebra sheds much light on a life led with great intensity and a death met tragically under dark circumstances. Sorting speculation from documented fact, it offers the fullest and most exacting account ever written of Galois' life and work. It took more than seventy years to fully understand the French mathematician's first mémoire (published in 1846) which formulated the famous "Galois theory" concerning the solvability of algebraic equations by radicals, from which group theory would follow. Obscurities in his other writings - mémoires and numerous fragments of extant papers - persist and his ideas challenge mathematicians to this day. Thus scholars will welcome those chapters devoted specifically to explicating all aspects of Galois' work. A comprehensive bibliography enumerates studies by and also those about the mathematician.




Whom the Gods Love


Book Description




Galois Theory


Book Description

The author Emil Artin is known as one of the greatest mathematicians of the 20th century. He is regarded as a man who gave a modern outlook to Galois theory. Original lectures by the master. This emended edition is with completely new typesetting and corrections. The free PDF file available on the publisher's website www.bowwowpress.org




The French Mathematician


Book Description

Rich in historical detail and bursting with intellectual passion, this captivating novel describes a genius's valiant quest for truth in post-Napoleon France, a turbulent and uncertain era that in many ways mirrors the world today.




Galois Theory for Beginners


Book Description

Galois theory is the culmination of a centuries-long search for a solution to the classical problem of solving algebraic equations by radicals. This book follows the historical development of the theory, emphasizing concrete examples along the way. It is suitable for undergraduates and beginning graduate students.




Duel at Dawn


Book Description

In the fog of a Paris dawn in 1832, ƒvariste Galois, the 20-year-old founder of modern algebra, was shot and killed in a duel. That gunshot, suggests Amir Alexander, marked the end of one era in mathematics and the beginning of another. Arguing that not even the purest mathematics can be separated from its cultural background, Alexander shows how popular stories about mathematicians are really morality tales about their craft as it relates to the world. In the eighteenth century, Alexander says, mathematicians were idealized as child-like, eternally curious, and uniquely suited to reveal the hidden harmonies of the world. But in the nineteenth century, brilliant mathematicians like Galois became Romantic heroes like poets, artists, and musicians. The ideal mathematician was now an alienated loner, driven to despondency by an uncomprehending world. A field that had been focused on the natural world now sought to create its own reality. Higher mathematics became a world unto itselfÑpure and governed solely by the laws of reason. In this strikingly original book that takes us from Paris to St. Petersburg, Norway to Transylvania, Alexander introduces us to national heroes and outcasts, innocents, swindlers, and martyrsÐall uncommonly gifted creators of modern mathematics.




The Equation that Couldn't Be Solved


Book Description

What do Bach's compositions, Rubik's Cube, the way we choose our mates, and the physics of subatomic particles have in common? All are governed by the laws of symmetry, which elegantly unify scientific and artistic principles. Yet the mathematical language of symmetry-known as group theory-did not emerge from the study of symmetry at all, but from an equation that couldn't be solved. For thousands of years mathematicians solved progressively more difficult algebraic equations, until they encountered the quintic equation, which resisted solution for three centuries. Working independently, two great prodigies ultimately proved that the quintic cannot be solved by a simple formula. These geniuses, a Norwegian named Niels Henrik Abel and a romantic Frenchman named Évariste Galois, both died tragically young. Their incredible labor, however, produced the origins of group theory. The first extensive, popular account of the mathematics of symmetry and order, The Equation That Couldn't Be Solved is told not through abstract formulas but in a beautifully written and dramatic account of the lives and work of some of the greatest and most intriguing mathematicians in history.




Why Beauty Is Truth


Book Description

Physics.




Galois Theory


Book Description