The Mechanics of Constitutive Modeling


Book Description

Constitutive modelling is the mathematical description of how materials respond to various loadings. This is the most intensely researched field within solid mechanics because of its complexity and the importance of accurate constitutive models for practical engineering problems. Topics covered include: Elasticity - Plasticity theory - Creep theory - The nonlinear finite element method - Solution of nonlinear equilibrium equations - Integration of elastoplastic constitutive equations - The thermodynamic framework for constitutive modelling – Thermoplasticity - Uniqueness and discontinuous bifurcations • More comprehensive in scope than competitive titles, with detailed discussion of thermodynamics and numerical methods. • Offers appropriate strategies for numerical solution, illustrated by discussion of specific models. • Demonstrates each topic in a complete and self-contained framework, with extensive referencing.




Constitutive Modeling of Engineering Materials


Book Description

Constitutive Modeling of Engineering Materials provides an extensive theoretical overview of elastic, plastic, damage, and fracture models, giving readers the foundational knowledge needed to successfully apply them to and solve common engineering material problems. Particular attention is given to inverse analysis, parameter identification, and the numerical implementation of models with the finite element method. Application in practice is discussed in detail, showing examples of working computer programs for simple constitutive behaviors. Examples explore the important components of material modeling which form the building blocks of any complex constitutive behavior. - Addresses complex behaviors in a wide range of materials, from polymers, to metals and shape memory alloys - Covers constitutive models with both small and large deformations - Provides detailed examples of computer implementations for material models




Constitutive Modelling in Geomechanics


Book Description

The purpose of this book is to bridge the gap between the traditional Geomechanics and Numerical Geotechnical Modelling with applications in science and practice. Geomechanics is rarely taught within the rigorous context of Continuum Mechanics and Thermodynamics, while when it comes to Numerical Modelling, commercially available finite elements or finite differences software utilize constitutive relationships within the rigorous framework. As a result, young scientists and engineers have to learn the challenging subject of constitutive modelling from a program manual and often end up with using unrealistic models which violate the Laws of Thermodynamics. The book is introductory, by no means does it claim any completeness and state of the art in such a dynamically developing field as numerical and constitutive modelling of soils. The author gives basic understanding of conventional continuum mechanics approaches to constitutive modelling, which can serve as a foundation for exploring more advanced theories. A considerable effort has been invested here into the clarity and brevity of the presentation. A special feature of this book is in exploring thermomechanical consistency of all presented constitutive models in a simple and systematic manner.




Constitutive Modelling of Solid Continua


Book Description

This volume consists of a collection of chapters by recognized experts to provide a comprehensive fundamental theoretical continuum treatment of constitutive laws used for modelling the mechanical and coupled-field properties of various types of solid materials. It covers the main types of solid material behaviour, including isotropic and anisotropic nonlinear elasticity, implicit theories, viscoelasticity, plasticity, electro- and magneto-mechanical interactions, growth, damage, thermomechanics, poroelasticity, composites and homogenization. The volume provides a general framework for research in a wide range of applications involving the deformation of solid materials. It will be of considerable benefit to both established and early career researchers concerned with fundamental theory in solid mechanics and its applications by collecting diverse material in a single volume. The readership ranges from beginning graduate students to senior researchers in academia and industry.




Continuum Mechanics


Book Description

This is a modern textbook for courses in continuum mechanics. It provides both the theoretical framework and the numerical methods required to model the behaviour of continuous materials. This self-contained textbook is tailored for advanced undergraduate or first-year graduate students with numerous step-by-step derivations and worked-out examples. The author presents both the general continuum theory and the mathematics needed to apply it in practice. The derivation of constitutive models for ideal gases, fluids, solids and biological materials, and the numerical methods required to solve the resulting differential equations, are also detailed. Specifically, the text presents the theory and numerical implementation for the finite difference and the finite element methods in the Matlab® programming language. It includes thirteen detailed Matlab® programs illustrating how constitutive models are used in practice.




Constitutive Modelling of Granular Materials


Book Description

In view of its extreme complexity the mathematical description of the mechanical behaviour of granular materials is an extremely difficult task. Today many different models compete with each other. However, the complexity of the models hinders their comparison, and the potential users are confused and, often, disencouraged. This book is expected to serve as a milestone in the present situation, to evaluate the present methodes, to clear up the situation, to focus and encourage for further research activities.




Soil Constitutive Models


Book Description

GSP 128 contains papers by 19 prominent constitutive modelers presented at the Geo-Frontier Conference, held in Austin, Texas, January 24-26, 2005.




Constitutive Modeling of Soils and Rocks


Book Description

This title provides a comprehensive overview of elastoplasticity relating to soil and rocks. Following a general outline of the models of behavior and their internal structure, each chapter develops a different area of this subject relating to the author's particular expertise. The first half of the book concentrates on the elastoplasticity of soft soils and rocks, while the second half examines that of hard soils and rocks.




Fluid Mechanics of Viscoelasticity


Book Description

The areas of suspension mechanics, stability and computational rheology have exploded in scope and substance in the last decade. The present book is one of the first of a comprehensive nature to treat these topics in detail. The aim of the authors has been to highlight the major discoveries and to present a number of them in sufficient breadth and depth so that the novice can learn from the examples chosen, and the expert can use them as a reference when necessary.The first two chapters, grouped under the category General Principles, deal with the kinematics of continuous media and the balance laws of mechanics, including the existence of the stress tensor and extensions of the laws of vector analysis to domains bounded by fractal curves or surfaces. The third and fourth chapters, under the heading Constitutive Modelling, present the tools necessary to formulate constitutive equations from the continuum or the microstructural approach. The last three chapters, under the caption Analytical and Numerical Techniques, contain most of the important results in the domain of the fluid mechanics of viscoelasticity, and form the core of the book.A number of topics of interest have not yet been developed to a theoretical level from which applications can be made in a routine manner. However, the authors have included these topics to make the reader aware of the state of affairs so that research into these matters can be carried out. For example, the sections which deal with domains bounded by fractal curves or surfaces show that the existence of a stress tensor in such regions is still open to question. Similarly, the constitutive modelling of suspensions, especially at high volume concentrations, with the corresponding particle migration from high to low shear regions is still very sketchy.




Practice of Constitutive Modelling for Saturated Soils


Book Description

This book describes the development of a constitutive modeling platform for soil testing, which is one of the key components in geomechanics and geotechnics. It discusses the fundamentals of the constitutive modeling of soils and illustrates the use of these models to simulate various laboratory tests. To help readers understand the fundamentals and modeling of soil behaviors, it first introduces the general stress–strain relationship of soils and the principles and modeling approaches of various laboratory tests, before examining the ideas and formulations of constitutive models of soils. Moving on to the application of constitutive models, it presents a modeling platform with a practical, simple interface, which includes various kinds of tests and constitutive models ranging from clay to sand, that is used for simulating most kinds of laboratory tests. The book is intended for undergraduate and graduate-level teaching in soil mechanics and geotechnical engineering and other related engineering specialties. Thanks to the inclusion of real-world applications, it is also of use to industry practitioners, opening the door to advanced courses on modeling within the industrial engineering and operations research fields.