Under the Microscope


Book Description

This is a brief history of the development of microscopy, from the use of beads and water droplets in ancient Greece, through the simple magnifying glass, to the modern compound microscope. The technology and optical theory are developed in a straightforward manner, and this leads to a description and explanation of the most modern technologies in electron microscopy, and scanning electron microscopy as well as the new scanning probe microscopies. A series of very interesting applications of the various microscopic techniques are described. The most recent pioneering techniques in near field and confocal optical microscope technologies are described and evaluated for their future importance.




Micrographia


Book Description




Scanning Electron Microscopy and X-Ray Microanalysis


Book Description

This book has evolved by processes of selection and expansion from its predecessor, Practical Scanning Electron Microscopy (PSEM), published by Plenum Press in 1975. The interaction of the authors with students at the Short Course on Scanning Electron Microscopy and X-Ray Microanalysis held annually at Lehigh University has helped greatly in developing this textbook. The material has been chosen to provide a student with a general introduction to the techniques of scanning electron microscopy and x-ray microanalysis suitable for application in such fields as biology, geology, solid state physics, and materials science. Following the format of PSEM, this book gives the student a basic knowledge of (1) the user-controlled functions of the electron optics of the scanning electron microscope and electron microprobe, (2) the characteristics of electron-beam-sample inter actions, (3) image formation and interpretation, (4) x-ray spectrometry, and (5) quantitative x-ray microanalysis. Each of these topics has been updated and in most cases expanded over the material presented in PSEM in order to give the reader sufficient coverage to understand these topics and apply the information in the laboratory. Throughout the text, we have attempted to emphasize practical aspects of the techniques, describing those instru ment parameters which the microscopist can and must manipulate to obtain optimum information from the specimen. Certain areas in particular have been expanded in response to their increasing importance in the SEM field. Thus energy-dispersive x-ray spectrometry, which has undergone a tremendous surge in growth, is treated in substantial detail.










Video Microscopy


Book Description

Video microscopy is used extensively in many life and biomedical science disciplines today, and is a useful tool for both cell biologists and students. This book presents how to track the dynamic changes that take place in the structure of living cells and in reconstituted preparations using video and digital imaging microscopy. Basic information, principles, and applications are also covered, as well as more specialized video microscopy techniques. Practical laboratory guide for methods and technologies used with video microscopyComprehensive, easy-to-follow instructionsFebruary 1998, c. 334 pp.




Introduction to Light Microscopy


Book Description

This book offers a beginner’s guide to using light microscopes. It begins with a brief introduction to the physics of optics, which will give the reader a basic grasp of the behaviors of light. In turn, each part of the microscope is explained using clear and simple English, together withdetailed photographs and diagrams. The reader will learn the function, care and correct use of each part. A troubleshooting section also helps resolve some of the most common issues encountered in light microscopy. Most people have a general idea of how to use a microscope, but many never get the full benefit, because they receive no training. With easy-to-follow steps and detailed images, this guide will help everyone achieve the best results, and be confident using their microscope. This book is intended for anyone using a light microscope, such as university students, people in lab environments, hobbyists, educators who teach science to young children, and anyone with a general interest in these valuable tools.




Physical Principles of Electron Microscopy


Book Description

Scanning and stationary-beam electron microscopes are indispensable tools for both research and routine evaluation in materials science, the semiconductor industry, nanotechnology and the biological, forensic, and medical sciences. This book introduces current theory and practice of electron microscopy, primarily for undergraduates who need to understand how the principles of physics apply in an area of technology that has contributed greatly to our understanding of life processes and "inner space." Physical Principles of Electron Microscopy will appeal to technologists who use electron microscopes and to graduate students, university teachers and researchers who need a concise reference on the basic principles of microscopy.




Microscopy


Book Description

"Using light, electrons, or X-rays, microscopes today form a vital tool not only in biology but in many other disciplines, including materials science and nanotechnology. In this Very Short Introduction Terence Allen describes the scientific principles behind the main forms of microscopy, and the exciting new developments in the field. Beginning with a brief history of microscopy, Allen surveys the diverse and powerful forms of microscopes available today, illustrating how microscopy impinges on almost every aspect of our daily lives."--Inside front cover.




Pharmaceutical Microscopy


Book Description

Microscopy plays an integral role in the research and development of new medicines. Pharmaceutical Microscopy describes a wide variety of techniques together with numerous practical applications of importance in drug development. The first section presents general methods and applications with an emphasis on the physical science aspects. Techniques covered include optical crystallography, thermal microscopy, scanning electron microscopy, energy dispersive x-ray spectrometry, microspectroscopy (infrared and Raman), and particle size and shape by image analysis. The second section presents applications of these techniques to specific topics of pharmaceutical interest, including studies of polymorphism, particle size and shape analysis, and contaminant identification. Pharmaceutical Microscopy is designed for those scientists who must use these techniques to solve pharmaceutical problems but do not need to become expert microscopists. Consequently, each section has exercises designed to teach the reader how to use and apply the techniques in the book. Although the focus is on pharmaceutical development, workers in other fields such as food science and organic chemistry will also benefit from the discussion of techniques and the exercises. Provides comprehensive coverage of key microscopy techniques used in pharmaceutical development Helps the reader to solve specific problems in pharmaceutical quality assurance Oriented and designed for pharmaceutical scientists who need to use microscopy but are not expert microscopists Includes a large number of practical exercises to give the reader hands-on experience with the techniques Written by an author with 21 years of experience in the pharmaceutical industry