The Molecular Basis of Bacterial Metabolism


Book Description

The present volume contains 17 lectures of the 41 st Mosbach Colloquium of the Gesellschaft fiir Biologische Chemie, held from April 5-7, 1990 on the topic "The Molecular Basis of Bacterial Metabolism". From the beginning it was not the intention of the organizers to present a comprehensive account, but rather to select new, exciting progress on sometimes exotic reactions of specifically bacterial, mainly anaerobic metabolism. Members of our society had contributed to this progress to an extent that greatly stimulated the scientific exchange with international colleagues during the days in Mosbach. The editors hope that this stimulation will be conveyed to the readers of the articles, which reach from the biochemistry of methanogenesis, via anaerobic radical reactions, metal biochemistry in hydrogen and nitrogen metabolism, conversions of light - and redox energy, to the regulation of metabolic adaptation, and the attempts to bioengineer novel pathways for the degradation of xenobiotica. We believe that the book represents a highly progressive field of over lapping disciplines, comprising microbiology and molecular genetics, chemistry of biomimetic interest, and biophysics, and that it gives insight into the impact modern technologies have on microbiological research today. The colloquium was generously supported by the Deutsche Forschungsgemeinschaft, the Paul-Martini-Stiftung, and the Fonds fiir Biologische Chemie. A. Trebst, G. Schafer, and D. Oesterhelt were a great help in preparing the program and we wish to thank them for their advice.




Bacterial Energetics


Book Description

Bacterial Energetics deals with bacterial energetics and the molecular basis of how ions move between and within energy-transducing molecules. Topics covered range from respiration-driven proton pumps and primary sodium pumps to light-driven primary ionic pumps, bacterial transport ATPases, and bacterial photosynthesis. Sodium-coupled cotransport and ion-exchange systems in prokaryotes are also considered. This volume is comprised of 17 chapters and begins with an analysis of the pumps and processes that establish electrochemical ion gradients across bacterial membranes, followed by a discussion on the major types of bioenergetic work that utilize these gradients. The energetics of periplasmic transport systems, chemolithotrophs, methanogens, and protein insertion and translocation into or across membranes are also examined, along with bioenergetics in extreme environments such as high-pressure and high-temperature environments; energetic problems of bacterial fermentations; energetics of bacterial motility; and energetics of the bacterial phosphotransferase system in sugar transport and the regulation of carbon metabolism. This book should be of interest to molecular biologists and biochemists.







The Chemistry of Microbiomes


Book Description

The 21st century has witnessed a complete revolution in the understanding and description of bacteria in eco- systems and microbial assemblages, and how they are regulated by complex interactions among microbes, hosts, and environments. The human organism is no longer considered a monolithic assembly of tissues, but is instead a true ecosystem composed of human cells, bacteria, fungi, algae, and viruses. As such, humans are not unlike other complex ecosystems containing microbial assemblages observed in the marine and earth environments. They all share a basic functional principle: Chemical communication is the universal language that allows such groups to properly function together. These chemical networks regulate interactions like metabolic exchange, antibiosis and symbiosis, and communication. The National Academies of Sciences, Engineering, and Medicine's Chemical Sciences Roundtable organized a series of four seminars in the autumn of 2016 to explore the current advances, opportunities, and challenges toward unveiling this "chemical dark matter" and its role in the regulation and function of different ecosystems. The first three focused on specific ecosystemsâ€"earth, marine, and humanâ€"and the last on all microbiome systems. This publication summarizes the presentations and discussions from the seminars.




Bacterial Physiology and Metabolism


Book Description

Recent determination of genome sequences for a wide range of bacteria has made in-depth knowledge of prokaryotic metabolic function essential in order to give biochemical, physiological, and ecological meaning to the genomic information. Clearly describing the important metabolic processes that occur in prokaryotes under different conditions and in different environments, this advanced text provides an overview of the key cellular processes that determine bacterial roles in the environment, biotechnology, and human health. Prokaryotic structure is described as well as the means by which nutrients are transported into cells across membranes. Glucose metabolism through glycolysis and the TCA cycle are discussed, as well as other trophic variations found in prokaryotes, including the use of organic compounds, anaerobic fermentation, anaerobic respiratory processes, and photosynthesis. The regulation of metabolism through control of gene expression and control of the activity of enzymes is also covered, as well as survival mechanisms used under starvation conditions.




Prokaryotic Metabolism and Physiology


Book Description

Extensive and up-to-date review of key metabolic processes in bacteria and archaea and how metabolism is regulated under various conditions.




Modern Microbial Genetics


Book Description

In accordance with its predecessor, the completely revised and expanded Second Edition of Modern Microbial Genetics focuses on how bacteria and bacteriophage arrange and rearrange their genetic material through mutation, evolution, and genetic exchange to take optimal advantage of their environment. The text is divided into three sections: DNA Metabolism, Genetic Response, and Genetic Exchange. The first addresses how DNA replicates, repairs itself, and recombines, as well as how it may be manipulated. The second section is devoted to how microorganisms interact with their environment, including chapters on sporulation and stress shock, and the final section contains the latest information on classic exchange mechanisms such as transformation and conjugation. Chapters include: * Gene Expression and Its Regulation * Single-Stranded DNA Phages * Genetic Tools for Dissecting Motility and Development of Myxococcus xanthus * Molecular Mechanism of Quorum Sensing * Transduction in Gram-Negative Bacteria * Genetic Approaches in Bacteria with No Natural Genetic Systems The editors also cultivate an attention to global regulatory systems throughout the book, elucidating how certain genes and operons in bacteria, defined as regulons, network and cooperate to suit the needs of the bacterial cell. With clear appreciation for the impact of molecular genomics, this completely revised and updated edition proves that Modern Microbial Genetics remains the benchmark text in its field.




Fundamentals of Bacterial Physiology and Metabolism


Book Description

This book provides useful information on microbial physiology and metabolism. The key aspects covered are prokaryotic diversity, growth physiology, basic metabolic pathways and their regulation, metabolic diversity with details of various unique pathways. Another focus area is stress physiology with details on varying environmental stresses, signal transduction, adaptation and survival. For instructional purposes, the book provides case studies, interesting facts, techniques etc. which help in showcasing the inter-disciplinary nature and bridge the gap between various aspects of applied microbiology.




Bacterial Pathogenesis


Book Description

Established almost 30 years ago, Methods in Microbiology is the most prestigious series devoted to techniques and methodology in the field. Now totally revamped, revitalized, with a new format and expanded scope, Methods in Microbiology will continue to provide you with tried and tested, cutting-edge protocols to directly benefit your research. - Focuses on the methods most useful for the microbiologist interested in the way in which bacteria cause disease - Includes section devoted to 'Approaches to characterising pathogenic mechanisms' by Stanley Falkow - Covers safety aspects, detection, identification and speciation - Includes techniques for the study of host interactions and reactions in animals and plants - Describes biochemical and molecular genetic approaches - Essential methods for gene expression and analysis - Covers strategies and problems for disease control




Mechanisms of antibiotic resistance


Book Description

Antibiotics represent one of the most successful forms of therapy in medicine. But the efficiency of antibiotics is compromised by the growing number of antibiotic-resistant pathogens. Antibiotic resistance, which is implicated in elevated morbidity and mortality rates as well as in the increased treatment costs, is considered to be one of the major global public health threats (www.who.int/drugresistance/en/) and the magnitude of the problem recently prompted a number of international and national bodies to take actions to protect the public (http://ec.europa.eu/dgs/health_consumer/docs/road-map-amr_en.pdf: http://www.who.int/drugresistance/amr_global_action_plan/en/; http://www.whitehouse.gov/sites/default/files/docs/carb_national_strategy.pdf). Understanding the mechanisms by which bacteria successfully defend themselves against the antibiotic assault represent the main theme of this eBook published as a Research Topic in Frontiers in Microbiology, section of Antimicrobials, Resistance, and Chemotherapy. The articles in the eBook update the reader on various aspects and mechanisms of antibiotic resistance. A better understanding of these mechanisms should facilitate the development of means to potentiate the efficacy and increase the lifespan of antibiotics while minimizing the emergence of antibiotic resistance among pathogens.