The National Energy Modeling System
Author :
Publisher :
Page : 66 pages
File Size : 17,21 MB
Release : 1996
Category : Energy policy
ISBN :
Author :
Publisher :
Page : 66 pages
File Size : 17,21 MB
Release : 1996
Category : Energy policy
ISBN :
Author : National Research Council
Publisher : National Academies Press
Page : 165 pages
File Size : 43,35 MB
Release : 1992-02-01
Category : Science
ISBN : 0309046343
This book addresses the process and actions for developing enhanced capabilities to analyze energy policy issues and perform strategic planning activities at the U.S. Department of Energy (DOE) on an ongoing basis. Within the broader context of useful analytical and modeling capabilities within and outside the DOE, this volume examines the requirements that a National Energy Modeling System (NEMS) should fulfill, presents an overall architecture for a NEMS, identifies data needs, and outlines priority actions for timely implementation of the system.
Author :
Publisher :
Page : pages
File Size : 24,92 MB
Release : 2005
Category :
ISBN :
The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period of 1990 to 2010. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system. The second chapter describes the modeling structure. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. Additional background on the development of the system is provided in Appendix A of this report, which describes the EIA modeling systems that preceded NEMS. More detailed model documentation reports for all the NEMS modules are also available from EIA.
Author :
Publisher :
Page : 164 pages
File Size : 23,65 MB
Release : 1992
Category : Energy consumption
ISBN :
Author :
Publisher :
Page : 74 pages
File Size : 46,65 MB
Release : 1986
Category : Energy consumption
ISBN :
Author :
Publisher : DIANE Publishing
Page : 1044 pages
File Size : 35,19 MB
Release : 1994
Category : Technology & Engineering
ISBN : 9780788103155
Provides potential users of the Nat. Energy Modeling System under development a detailed look at the components of the new modeling system, and affords the opportunity for critical analysis of the system by recognized experts in the modeling field and input from potential users about how the system can best address their needs. Covers: oil and gas, renewable fuels, electricity planning, petroleum markets, gas transmission and distribution, coal supply and coal synthetics, transport. demand, oil supply, and more. Charts and tables. Over 80 presentations.
Author : National Research Council
Publisher : National Academies Press
Page : 506 pages
File Size : 48,97 MB
Release : 2010-05-26
Category : Science
ISBN : 0309155800
Despite the many benefits of energy, most of which are reflected in energy market prices, the production, distribution, and use of energy causes negative effects. Many of these negative effects are not reflected in energy market prices. When market failures like this occur, there may be a case for government interventions in the form of regulations, taxes, fees, tradable permits, or other instruments that will motivate recognition of these external or hidden costs. The Hidden Costs of Energy defines and evaluates key external costs and benefits that are associated with the production, distribution, and use of energy, but are not reflected in market prices. The damage estimates presented are substantial and reflect damages from air pollution associated with electricity generation, motor vehicle transportation, and heat generation. The book also considers other effects not quantified in dollar amounts, such as damages from climate change, effects of some air pollutants such as mercury, and risks to national security. While not a comprehensive guide to policy, this analysis indicates that major initiatives to further reduce other emissions, improve energy efficiency, or shift to a cleaner electricity generating mix could substantially reduce the damages of external effects. A first step in minimizing the adverse consequences of new energy technologies is to better understand these external effects and damages. The Hidden Costs of Energy will therefore be a vital informational tool for government policy makers, scientists, and economists in even the earliest stages of research and development on energy technologies.
Author : Henrik Lund
Publisher : Academic Press
Page : 383 pages
File Size : 29,11 MB
Release : 2014-03-24
Category : Technology & Engineering
ISBN : 012409595X
In this new edition of Renewable Energy Systems, globally recognized renewable energy researcher and professor, Henrik Lund, sets forth a straightforward, comprehensive methodology for comparing different energy systems' abilities to integrate fluctuating and intermittent renewable energy sources. The book does this by presenting an energy system analysis methodology. The book provides the results of more than fifteen comprehensive energy system analysis studies, examines the large-scale integration of renewable energy into the present system, and presents concrete design examples derived from a dozen renewable energy systems around the globe. Renewable Energy Systems, Second Edition also undertakes the socio-political realities governing the implementation of renewable energy systems by introducing a theoretical framework approach aimed at understanding how major technological changes, such as renewable energy, can be implemented at both the national and international levels. - Provides an introduction to the technical design of renewable energy systems - Demonstrates how to analyze the feasibility and efficiency of large-scale systems to help implementers avoid costly trial and error - Addresses the socio-political challenge of implementing the shift to renewables - Features a dozen extensive case studies from around the globe that provide real-world templates for new installations
Author : Steven A. Gabriel
Publisher : Springer Science & Business Media
Page : 637 pages
File Size : 22,92 MB
Release : 2012-07-20
Category : Business & Economics
ISBN : 1441961232
This addition to the ISOR series introduces complementarity models in a straightforward and approachable manner and uses them to carry out an in-depth analysis of energy markets, including formulation issues and solution techniques. In a nutshell, complementarity models generalize: a. optimization problems via their Karush-Kuhn-Tucker conditions b. on-cooperative games in which each player may be solving a separate but related optimization problem with potentially overall system constraints (e.g., market-clearing conditions) c. conomic and engineering problems that aren’t specifically derived from optimization problems (e.g., spatial price equilibria) d. roblems in which both primal and dual variables (prices) appear in the original formulation (e.g., The National Energy Modeling System (NEMS) or its precursor, PIES). As such, complementarity models are a very general and flexible modeling format. A natural question is why concentrate on energy markets for this complementarity approach? s it turns out, energy or other markets that have game theoretic aspects are best modeled by complementarity problems. The reason is that the traditional perfect competition approach no longer applies due to deregulation and restructuring of these markets and thus the corresponding optimization problems may no longer hold. Also, in some instances it is important in the original model formulation to involve both primal variables (e.g., production) as well as dual variables (e.g., market prices) for public and private sector energy planning. Traditional optimization problems can not directly handle this mixing of primal and dual variables but complementarity models can and this makes them all that more effective for decision-makers.
Author : Hooman Farzaneh
Publisher : Springer
Page : 173 pages
File Size : 32,64 MB
Release : 2019-04-09
Category : Technology & Engineering
ISBN : 9811362211
This book serves as an introductory reference guide for those studying the application of models in energy systems. The book opens with a taxonomy of energy models and treatment of descriptive and analytical models, providing the reader with a foundation of the basic principles underlying the energy models and positioning these principles in the context of energy system studies. In turn, the book provides valuable insights into the varied applications of different energy models to answer complex questions, including those concerning specific aspects of energy policy measures dealing with issues of supply and demand. Case studies are provided in all of the chapters, offering real-world examples of how existing models fit the classification methods outlined here. The book’s remaining chapters address a broad range of principles and applications, taking the reader from the basic principles involved, to state-of-the-art energy production and consumption processes, using modeling and validation/illustration in case studies to do so. With its in-depth mathematical foundation, this book serves as a comprehensive collection of work on modeling energy systems and processes, taking inexperienced graduate students from the basics through to a high-level understanding of the modeling processes in question, while also providing professionals and academic researchers in the field of energy planning with an up-to-date reference guide covering the latest works.