The Nature of Solids


Book Description

Unusually clear, accessible introduction to contemporary theories of solid-state physics. Nonmathematical treatment of heat, atomic motion, electrons in solids, many other topics. "Excellent." — Choice. 1965 edition.




Phase Transitions in Solids


Book Description




Amorphous Solids


Book Description

It is now ten years since it was first convincingly shown that below 1 K the ther mal conductivity and the heat capacity of amorphous solids behave in a way which is strikingly different to that of crystalline solids. Since that time there has been a wide variety of experimental and theoretical studies which have not only defined and clarified the low temperature problem more closely, but have also linked these differences between amorphous and crystalline solids to those suggested by older acoustic and thermal experiments (extending up to 100 K). The interest in this somewhat restricted branch of physics lies to a considerable extent in the fact that the differences were so unexpected. It might be thought that as the tempera ture, probing frequency, or more generally the energy decreases, a continuum de scription in which structural differences between glass and crystal are concealed should become more accurate. In a sense this is true, but it appears that there exists in an amorphous solid a large density of additional excitations which have no counterpart in normal crystals. This book presents a survey of the wide range of experimental investigations of these low energy excitations, together with a re view of the various theoretical models put forward to explain their existence and nature.




Structure and Chemistry of Crystalline Solids


Book Description

Understandable by anyone concerned with crystals or solid state properties dependent on structure Presents a general system using simple notation to reveal similarities and differences among crystal structures More than 300 selected and prepared figures illustrate structures found in thousands of compounds




Amorphous Solids and the Liquid State


Book Description

This book has its origins in the 1982 Spring College held at the Interna tional Centre for Theoretical Physics, Miramare, Trieste. The primary aim is to give a broad coverage of liquids and amorphous solids, at a level suitable for graduate students and research workers in condensed-matter physics, physical chemistry, and materials science. The book is intended for experimental workers with interests in the basic theory. While the topics covered are many, it was planned to place special emphasis on both static structure and dynamics, including electronic transport. This emphasis is evident from the rather complete coverage of the determination of static structure from both diffraction experiments and, for amorphous solids especially, from model building. The theory of the structure of liquids and liquid mixtures is then dealt with from the standpoint of, first, basic statistical mechanics and, subsequently, pair potentials constructed from the electron theory of simple metals and their alloys. The discussion of static structure is completed in two chapters with rather different emphases on liquid surfaces and interfaces. The first deals with the basic statistical mechanics of neutral and charged interfaces, while the second is concerned with solvation and double-layer effects. Dynamic structure is introduced by a comprehensive discussion of single-particle motion in liquids. This is followed by the structure and dynamics of charged fluids, where again much basic statistical mechanics is developed.




Electronic Structure and the Properties of Solids


Book Description

This text offers basic understanding of the electronic structure of covalent and ionic solids, simple metals, transition metals and their compounds; also explains how to calculate dielectric, conducting, bonding properties.




Physics of Rare Earth Solids


Book Description







Optical Properties of Excited States in Solids


Book Description

This book presents an account of the course "Optical Properties of Excited States in Solids" held in Erice, Italy, from June 16 to 3D, 1991. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Centre for Scientific Culture. The purpose of this course was to present physical models, mathematical formalisms and experimental techniques relevant to the optical properties of excited states in solids. Some active physical species, such as ions or radicals, could survive indefinitely if they were completely 'isolated in space. Other active species, such as excited molecular and solid-state systems, are inherently unstable, even in isolation, due to the spontaneous mechanisms that may convert their excitation energies into radiation or heat. Physical parameters that may be used to characterize these excited systems are the localization or delocalization, and the coherence or incoherence, of their state excitations. In solids the excited states, whether they are localized (as for impurities in insulators) or delocalized (as they may occur in semiconductors), are relevant in several regards. Their de-excitation is extremely sensitive to the nature of the excitations of the systems, and a study of the de-excitation processes can yield a variety of information. For example, the excited states may represent the initial condition of the onset of such processes as Stokes-shifted emission, hot luminescence, symmetry-dependent Jahn-Teller and scattering processes, tunneling processes, energy transfer to like and unlike centers, superradiance, coherent radiation, and excited state absorption.




Principles of the Theory of Solids


Book Description

Professor Ziman's classic textbook on the theory of solids was first pulished in 1964. This paperback edition is a reprint of the second edition, which was substantially revised and enlarged in 1972. The value and popularity of this textbook is well attested by reviewers' opinions and by the existence of several foreign language editions, including German, Italian, Spanish, Japanese, Polish and Russian. The book gives a clear exposition of the elements of the physics of perfect crystalline solids. In discussing the principles, the author aims to give students an appreciation of the conditions which are necessary for the appearance of the various phenomena. A self-contained mathematical account is given of the simplest model that will demonstrate each principle. A grounding in quantum mechanics and knowledge of elementary facts about solids is assumed. This is therefore a textbook for advanced undergraduates and is also appropriate for graduate courses.