Near-Threshold Fatigue Crack Growth Behavior of Fine-Grain Nickel-Based Alloys


Book Description

Constant-Kmax fatigue crack growth tests were performed on two finegrain nickel-base alloys Inconel 718 (DA) and Ren 95 to determine if these alloys exhibit near-threshold time-dependent crack growth behavior observed for fine-grain aluminum alloys in room-temperature laboratory air. Test results showed that increases in K(sub max) values resulted in increased crack growth rates, but no evidence of time-dependent crack growth was observed for either nickel-base alloy at room temperature. Newman, John A. and Piascik, Robert S. Langley Research Center NASA/TM-2003-212443, NAS 1.15:212443, L-18314, ARL-TR-3021







Near-Threshold Crack Growth in Nickel-Base Superalloys


Book Description

The influence of stress ratio on the elevated-temperature crack growth behavior of the nickel-base superalloys René 95 and Alloy 718 is discussed. The near-threshold and Region II crack growth behavior of a wide variety of microstructures for each alloy are explained using phenomenological descriptions of closure, that is, K-dependent or K-independent closure. K-dependent closure is the type of closure observed for nickel-base superalloys where increasing the R-ratio causes a uniform lateral shift of the entire fatigue crack growth curve. K-independent closure is the type commonly reported for steels and titanium alloys where increasing the R-ratio has a larger influence on near-threshold crack growth than on Region II crack growth. The existence of K-dependent closure in nickel-base superalloys results in microstructurally sensitive crack growth rates, even at high R-ratios. This permits the use of K-based crack growth prediction techniques and simplifies alloy and process development for applications having complex loading spectra.




Threshold Crack Growth Behavior of Nickel-Base Superalloy at Elevated Temperature


Book Description

An experimental program was conducted to evaluate the effects of frequency and R on the near-threshold crack growth behavior of Inconel 718 at 649°C in laboratory air. Frequencies from 0.01 to 400 Hz and R from 0.1 to 0.9 were applied to compact tension [C(T)] and middle- or center-cracked tension [M(T)] specimens under decreasing-K conditions using computer-controlled test machines. Digital load-displacement data were obtained to determine crack length and closure load. The fatigue crack growth threshold in Inconel 718 at 649°C obtained using decreasing ?K testing was generally associated with a crack arrest phenomenon which could be attributed to the buildup of oxides with time. Over the ranges of R and v used in this investigation, the growth rate behavior at the onset of crack arrest appears to be a combination of time-dependent and cyclic-dependent behavior. Even at 400 Hz, purely cyclic behavior was apparently never reached. For crack growth rate modeling, both frequency and stress ratio have to be incorporated in the characterization of ?Kth. Over the ranges of parameters tested, a cyclic threshold was approached at high frequencies and low R and a sustained load time-dependent threshold was obtained at high R, indicating that the cyclic contribution to the growth rate was negligible.




The Effect of Closure on the Near-Threshold Fatigue Crack Propagation Rates of a Nickel Base Superalloy


Book Description

An experimental study of the effects of closure on the near-threshold fatigue crack growth rates in a nickel-base superalloy is presented. Fatigue crack propagation (FCP) tests were conducted on Rene' 95 at 650°C under either constant load amplitude (increasing ?K) or under threshold load shedding (decreasing ?K) test conditions. Particular emphasis was placed on the level of closure in the near threshold regime as a function of load history, specimen size and thickness, and environment. Test results indicated that for decreasing load threshold tests the recorded threshold levels were independent of load shedding rates. Specimen thickness was found to have no influence on FCP rates, threshold values, or closure loads, thereby eliminating plasticity induced closure as a dominant mechanism. Tests performed in vacuum produced closure values identical to those obtained in an oxidizing environment. It was concluded that the primary operating closure mechanism was roughness induced closure.







Modelling of Crack Growth in Single-Crystal Nickel-Base Superalloys


Book Description

This dissertation was produced at the Division of Solid Mechanics at Linköping University and is part of a research project, which comprises modelling, microstructure investigations and material testing of cast nickel-base superalloys. The main objective of this work was to deepen the understanding of the fracture behaviour of single-crystal nickel-base superalloys and to develop a model to predict the fatigue crack growth behaviour. Frequently, crack growth in these materials has been observed to follow one of two distinct cracking modes; Mode I like cracking perpendicular to the loading direction or crystallographic crack growth on the octahedral {111}-planes, where the latter is associated with an increased fatigue crack growth rate. Thus, it is of major importance to account for this behaviour in component life prediction. Consequently, a model for the prediction of the transition of cracking modes and the correct active crystallographic plane, i.e. the crack path, and the crystallographic crack growth rate has been developed. This model is based on the evaluation of appropriate crack driving forces using three-dimensional finite-element simulations. A special focus was given towards the influence of the crystallographic orientation on the fracture behaviour. Further, a model to incorporate residual stresses in the crack growth modelling is presented. All modelling work is calibrated and validated by experiments on different specimen geometries with different crystallographic orientations. This dissertation consists of two parts, where Part I gives an introduction and background to the field of research, while Part II consists of six appended papers. Die vorliegende Dissertation wurde in der Abteilung für Festigkeitslehre an der Universität von Linköping erstellt und ist Teil eines Forschungsprojektes, welches Modellierung, Mikrostrukturuntersuchungen und Materialtests von gegossenen nickelbasierten Superlegierungen umfasst. Das Hauptziel dieser Arbeit war es, das Verständnis des Bruchverhaltens von einkristallinen Superlegierungen auf Nickelbasis zu vertiefen und ein Modell zur Vorhersage des Wachstumsverhaltens von Ermüdungsrissen zu entwickeln. Es wurde beobachtet, dass das Risswachstum in diesen Materialien einem von zwei unterschiedlichen Rissmodi folgt; Modus I Rissfortschritt senkrecht zur Belastungsrichtung oder kristallographisches Risswachstum auf den oktaedrischen f111g-Ebenen, wobei letzteres mit einer erhöhten Ermüdungsrisswachstumsrate verbunden ist. Somit ist es von grosser Bedeutung dieses Verhalten in der Lebensdauervorhersage einer Komponente zu berücksichtigen. Demzufolge wurde ein Modell für die Vorhersage des Übergangs zwischen den Rissmodi und der korrekten aktiven kristallographischen Ebene, d.h. des Risspfades, sowie der kristallographischen Risswachstumsrate erarbeitet. Dieses Modell basiert auf geeigneten Rissantriebskräften, welche mit Hilfe dreidimensionaler Finite-Elemente-Simulationen berechnet werden. Im Fokus stand insbesondere der Einuss der kristallographischen Orientierung auf das Bruchverhalten. Ausserdem wird ein Modell zur Berücksichtigung von Restspannungen in der Risswachstumsmodellierung präsentiert. Alle Modellierungsarbeiten wurden durch Experimente an verschiedenen Probengeometrien mit unterschiedlichen kristallographischen Orientierungen kalibriert und validiert. Diese Dissertation besteht aus zwei Teilen, wobei Teil I aus einer Einführung und einem Hintergrund in das Forschungsgebiet und Teil II aus sechs beigefügten Forschungsartikeln besteht.