The New Physical Optics Notebook


Book Description

Approaches the topic of physical optics with examples drawn from the physical processes described. Includes chapters on Fourier transforms, image formation, optical coherence, diffraction, interference, holography, interferometry, analog optical computing, synthetic aperture imaging, and others. Contains more than 600 photographs and line drawings and more than 650 references.







The New Physical Optics Notebook


Book Description




Physical Optics Notebook


Book Description







Optics


Book Description

Optics clearly explains the principles of optics using excellent pedagogy to support student learning. Beginning with introductory ideas and equations, K.K. Sharma takes the reader through the world of optics by detailing problems encountered, advanced subjects, and actual applications. Elegantly written, this book rigorously examines optics with over 300 illustrations and several problems in each chapter. The book begins with light propagation in anisotropic media considered much later in most books. Nearly one third of the book deals with applications of optics. This simple idea of merging the sometimes overwhelming and dry subject of optics with real world applications will create better future engineers. It will make ‘optics’ jump off the page for readers and they will see it take shape in the world around them. In presenting optics practically, as well as theoretically, readers will come away not only with a complete knowledge base but a context in which to place it. This book is recommended for optical engineers, libraries, senior undergraduate students, graduate students, and professors. Strong emphasis on applications to demonstrate the relevance of the theory Includes chapter on problem solving of ray deviations, focusing errors, and distortion Problems are included at the end of each chapter for thorough understanding of this dense subject matter




Optics and Lasers


Book Description

Optics and Lasers is an introduction to engineering and applied optics, including not only elementary ray and wave optics, but also lasers, holography, coherence, fibers, and optical waveguides. It stresses physical principles, applications, and instrumentation. The textbook will be most useful to the practicing engineer or experimental scientist, graduate student, or advanced undergraduate. It contains more than enough material from which to select the core of an introductory optics course and sufficient to form the bulk of a more advanced course.




Modern Optics Simplified


Book Description

This textbook reduces the complexity of the coverage of optics to allow a student with only elementary calculus to learn the principles of optics and the modern Fourier theory of diffraction and imaging. Students majoring in sciences or engineering and taking a standard physics course on optics will find this text useful. Examples of a variety of applications dependent on optics allow the student to connect this course to their particular field of interest. Topics covered include aberrations with experimental examples, correction of chromatic aberration, explanation of coherence and the use of interference theory to design an antireflection coating. Fourier transform optics and its application to diffraction and imaging, use of Gaussian wave theory, and fiber optics make the text of interest to those in electrical and bioengineering as well as physics and medical science. The text includes hundreds of photos, figures and diagrams to provide readers with strong visual insights into optics. More difficult, optional topics are highlighted throughout, and the need for experience with differential equations and extensive use of vector theory are avoided by using a one dimensional theory where possible. Maxwell's equations are introduced only to determine the properties of a light wave, and the boundary conditions are introduced to characterize reflection and refraction. Most discussion is limited to reflection. The book also introduces Fourier transforms as they are needed in the discussion of diffraction and imaging.




Tribute to Emil Wolf


Book Description

Wolf's contributions to optical physics go far beyond his co-writing, with Max Born, the classic Principles of Optics. He introduced spatial coherence, he was the first to describe Gabor's holography, and his work has served as the foundation of about 250 companies and corporate divisions in the English-speaking world. In these 23 essays, two of which are tributes to the life of Wolf, contributors consider aspects of his work such as the polarization of light, the electromagnetic theory of optical coherence, wave descriptions of optical measurements, holographic microscopy, optical physics and psychology, the Wolf effect and the Wolf shift, optical pathlength spectroscopy, the diffractive multifocal focusing effect, phase and information, holography, internal reflection tomography, and nano- optics. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com).




Diazonaphthoquinone-based Resists


Book Description

This book elucidates the reasons underlying the lasting success of DNQ/N resist systems by examining the correlation between the chemical structure of the components and the photoresist performance. The basic chemistry of both DNQ sensitizers and novolak resins are explored. Focus also is placed on the chemical basis of application-related facets of the lithographic process. Methods of increasing process performance, such as image reversal, top layer imaging, antireflection layers, and phase shift technology are treated.