The New Superconducting Electronics


Book Description

This volume is based on the proceedings of the NATO-sponsored Advanced Studies Institute (ASn on The New Superconducting Electronics (held 9-20 August 1992 in Waterville Valley, New Hampshire USA). The contents herein are intended to provide an update to an earlier volume on the same subject (based on a NATO ASI held in 1988). Four years seems a relatively short time interval, and our title itself, featuring The New Superconducting Electronics, may appear somewhat pretentious. Nevertheless, we feel strongly that the ASI fostered a timely reexamination of the technical progress and application potential of this rapid-paced field. There are, indeed, many new avenues for technological innovation which were not envisioned or considered possible four years ago. The greatest advances by far have occurred with regard to oxide superconductors, the so-called high transition-temperature superconductors, known in short as HTS. These advances are mainly in the ability to fabricate both (1) high-quality, relatively large-area films for microwave filters and (2) multilayer device structures, principally superconducting-normal-superconducting (SNS) Josephson junctions, for superconducting-quantum-interference-device (SQUID) magnetometers. Additionally, we have seen the invention and development of the flux-flow transistor, a planar three-terminal device. During the earlier ASI only the very first HTS films with adequate critical-current density had just been fabricated, and these were of limited area and had high resistance for microwave current.




SQUIDs, the Josephson Effects and Superconducting Electronics


Book Description

The science of superconducting electronics was first developed over forty years ago, fifty years after the discovery of superconductivity. Since then, a wide range of applications has emerged, and more are envisaged within this ever expanding and exciting field. SQUIDs, the Josephson Effects and Superconducting Electronics chronicles this development from fundamental principles to the present work with high-temperature superconductors. The book discusses superconductivity, Josephson effects, and detectors of unparalleled sensitivity such as SQUIDs. It punctuates theory with practical discussions on how to harness this new science. This complete guide to the subject is an invaluable resource for graduate students and researchers with a specific interest in this field. It also provides guidance to those working in areas of industry where superconducting electronics could be applied.




Principles of Superconductive Devices and Circuits


Book Description

Aimed at first-year electrical engineering and physics courses at the graduate level, this book introduces theories useful for practical analysis, providing an understanding and the basis for a variety of applications.




Superconducting Devices


Book Description

Superconducting Devices presents the theory, qualification, and fabrication of superconducting device elements and integrated circuitry. This book discusses the various uses of superconducting devices in many areas where their sensitivity, speed, or other characteristics stemming from the unique nature of superconductivity make them the device of choice. Organized into 10 chapters, this book begins with an overview of superconducting quantum interference devices (SQUIDs), which is the main achievement of superconductor electronics. This text then examines the status of dc and rf SQUIDs. Other chapters consider the progress in the fabrication technology for high-quality junctions and it integration technology, which are developed mainly for digital applications. This book discusses as well the increasing need for compact submillimeter sources for use in such applications as satellite communications and receivers for astronomical observation. The final chapter deals with the thin film tunneling experiments. This book is a valuable resource for physicists, chemists, materials scientists, and electrical engineers.




The New Superconducting Electronics


Book Description

This work provides a review of recent advances in all aspects of superconducting electronics, both for the traditional (4 K) liquid helium based (LTS) materials and the more recent ceramic (HTS) materials that can operate at higher temperatures in the range of liquid nitrogen (77 K).




Nuclear Electronics


Book Description

With the commercialisation of superconducting particles and radiation detectors set to occur in the very near future, nuclear analytical instrumentation is taking a big step forward. These new detectors have a high degree of accuracy, stability and speed and are suitable for high-density multiplex integration in nuclear research laboratories and astrophysics. Furthermore, superconducting detectors can also be successfully applied to food safety, airport security systems, medical examinations, doping tests & forensic investigations. This book is the first to address a new generation of analytical tools based on new superconductor detectors demonstrating outstanding performance unsurpassed by any other conventional devices. Presenting the latest research and development in nanometer technologies and biochemistry this book: * Discusses the development of nuclear sensing techniques. * Provides guidance on the design and use of the next generation of detectors. * Describes cryogenic detectors for nuclear measurements and spectrometry. * Covers primary detectors, front-end readout electronics and digital signal processing. * Presents applications in nanotechnology and modern biochemistry including DNA sequencing, proteinomics, microorganisms. * Features examples of two applications in X-ray electron probe nanoanalysis and time-of-flight mass spectrometry. This comprehensive treatment is the ideal reference for researchers, industrial engineers and graduate students involved in the development of high precision nuclear measurements, nuclear analytical instrumentation and advanced superconductor primary sensors. This book will also appeal to physicists, electrical and electronic engineers in the nuclear industry.




Josephson Junctions


Book Description

This book summarizes the history and present status and applications of Josephson junctions. These devices are leading elements in superconducting electronics and provide state-of-the-art performance in detection of small magnetic fields and currents, in several digital computing methods, and in medical diagnostic devices and now provide voltage standards used worldwide. Astronomical infrared (IR) telescopes, including the South Pole Telescope, use these junctions in combinations called superconducting quantum interference devices (SQUIDs).




Superconducting Electronics


Book Description

The genesis of the NATO Advanced Study Institute (ASI) upon which this volume is based, occurred during the summer of 1986 when we came to the realization that there had been significant progress during the early 1980's in the field of superconducting electronics and in applications of this technology. Despite this progress, there was a perception among many engineers and scientists that, with the possible exception of a limited number of esoteric fundamental studies and applications (e.g., the Josephson voltage standard or the SQUID magnetometer), there was no significant future for electronic systems incorporating superconducting elements. One of the major reasons for this perception was the aversion to handling liquid helium or including a closed-cycle helium liquefier. In addition, many critics felt that IBM's cancellation of its superconducting computer project in 1983 was "proof" that superconductors could not possibly compete with semiconductors in high-speed signal processing. From our perspective, the need for liquid helium was outweighed by improved performance, i. e., higher speed, lower noise, greater sensitivity and much lower power dissipation. For many commercial, medical, scientific and military applications, these attributes can lead to either enhanced capability (e.g., compact real-time signal processing) or measurements that cannot be made using any other technology (e.g., SQUID magnetometry to detect neuromagnetic activity).




Applied Superconductivity


Book Description

The title discusses mainly weak superconductivity, in particular the foundations of Josephson effects and their applications in superconducting devices and circuits. One of the most prominent topics in low temperature study, Superconductivity, is presented by the renowned scientist Rudolf Gross, Director of the Walther-Meissner-Institute for Low Temperature Research in Garching, Munich, and his two fellow scientists."




Dynamics of Josephson Junctions and Circuits


Book Description

"This monograph is intended to give a relatively complete review of Josephson junction dynamics as it stands in the mid-1980's. The main idea of the author is to present the reader with as many useful results as possible by the simplest means, rather than to demonstrate theoretical muscle. This is why almost all the topics requiring elaborate techniques for their analysis are shifted to the ends of the chapters and the most complex chapters, to the end of the book. Topics which are of relatively minor importance for further discussion are mainly presented in the form of 'problems' at the end of the sections." -- from Preface.