Book Description
Stochastic Processes; Fluctuation Phenomena; Classical Statistical Mechanics; Oscillator; Brownian Motion; Stochastic Resonance; Multiplicative Noise.
Author : M. Gitterman
Publisher : World Scientific
Page : 158 pages
File Size : 37,62 MB
Release : 2005
Category : Science
ISBN : 9812565124
Stochastic Processes; Fluctuation Phenomena; Classical Statistical Mechanics; Oscillator; Brownian Motion; Stochastic Resonance; Multiplicative Noise.
Author : Ali Hajimiri
Publisher : Springer Science & Business Media
Page : 214 pages
File Size : 42,26 MB
Release : 2007-05-08
Category : Technology & Engineering
ISBN : 0306481995
It is hardly a revelation to note that wireless and mobile communications have grown tremendously during the last few years. This growth has placed stringent requi- ments on channel spacing and, by implication, on the phase noise of oscillators. C- pounding the challenge has been a recent drive toward implementations of transceivers in CMOS, whose inferior 1/f noise performance has usually been thought to disqualify it from use in all but the lowest-performance oscillators. Low noise oscillators are also highly desired in the digital world, of course. The c- tinued drive toward higher clock frequencies translates into a demand for ev- decreasing jitter. Clearly, there is a need for a deep understanding of the fundamental mechanisms g- erning the process by which device, substrate, and supply noise turn into jitter and phase noise. Existing models generally offer only qualitative insights, however, and it has not always been clear why they are not quantitatively correct.
Author : Enrico Rubiola
Publisher : Cambridge University Press
Page : 0 pages
File Size : 11,95 MB
Release : 2010-06-10
Category : Technology & Engineering
ISBN : 9780521153287
Presenting a comprehensive account of oscillator phase noise and frequency stability, this practical text is both mathematically rigorous and accessible. An in-depth treatment of the noise mechanism is given, describing the oscillator as a physical system, and showing that simple general laws govern the stability of a large variety of oscillators differing in technology and frequency range. Inevitably, special attention is given to amplifiers, resonators, delay lines, feedback, and flicker (1/f) noise. The reverse engineering of oscillators based on phase-noise spectra is also covered, and end-of-chapter exercises are given. Uniquely, numerous practical examples are presented, including case studies taken from laboratory prototypes and commercial oscillators, which allow the oscillator internal design to be understood by analyzing its phase-noise spectrum. Based on tutorials given by the author at the Jet Propulsion Laboratory, international IEEE meetings, and in industry, this is a useful reference for academic researchers, industry practitioners, and graduate students in RF engineering and communications engineering.
Author : Moshe Gitterman
Publisher : World Scientific Publishing Company
Page : 189 pages
File Size : 13,36 MB
Release : 2012-12-18
Category : Science
ISBN : 9814440507
The properties of the harmonic oscillator with random frequency or/and random damping formed the content of the first edition. The second edition includes hundreds of publications on this subject since 2005. The noisy oscillator continues to be the subject of intensive studies in physics, chemistry, biology, and social sciences.The new and the latest type of a stochastic oscillator has also been considered, namely, an oscillator with random mass. Such model describes, among other phenomena, Brownian motion with adhesion, where the molecules of the surrounding medium not only randomly collide, but also stick to the Brownian particle for some (random) time, thereby changing its mass. This edition contains two new chapters, eight new sections and an expanded bibliography. A wide group of researchers, students and teachers will benefit from this book.
Author : Burkhard Schiek
Publisher : John Wiley & Sons
Page : 424 pages
File Size : 48,63 MB
Release : 2006-07-14
Category : Technology & Engineering
ISBN : 0470038934
A classroom-tested book addressing key issues of electrical noise This book examines noise phenomena in linear and nonlinear high-frequency circuits from both qualitative and quantitative perspectives. The authors explore important noise mechanisms using equivalent sources and analytical and numerical methods. Readers learn how to manage electrical noise to improve the sensitivity and resolution of communication, navigation, measurement, and other electronic systems. Noise in High-Frequency Circuits and Oscillators has its origins in a university course taught by the authors. As a result, it is thoroughly classroom-tested and carefully structured to facilitate learning. Readers are given a solid foundation in the basics that allows them to proceed to more advanced and sophisticated themes such as computer-aided noise simulation of high-frequency circuits. Following a discussion of mathematical and system-oriented fundamentals, the book covers: * Noise of linear one- and two-ports * Measurement of noise parameters * Noise of diodes and transistors * Parametric circuits * Noise in nonlinear circuits * Noise in oscillators * Quantization noise Each chapter contains a set of numerical and analytical problems that enable readers to apply their newfound knowledge to real-world problems. Solutions are provided in the appendices. With their many years of classroom experience, the authors have designed a book that is ideal for graduate students in engineering and physics. It also addresses key issues and points to solutions for engineers working in the burgeoning satellite and wireless communications industries.
Author : M. Gitterman
Publisher : World Scientific
Page : 133 pages
File Size : 30,32 MB
Release : 2008
Category : Mathematics
ISBN : 9812833005
This book contains the general description of the mathematical pendulum subject to constant torque, periodic and random forces. The latter appear in additive and multiplicative form with their possible correlation. For the underdamped pendulum driven by periodic forces, a new phenomenon OCo deterministic chaos OCo comes into play, and the common action of this chaos and the influence of noise are taken into account. The inverted position of the pendulum can be stabilized either by periodic or random oscillations of the suspension axis or by inserting a spring into a rigid rod, or by their combination. The pendulum is one of the simplest nonlinear models, which has many applications in physics, chemistry, biology, medicine, communications, economics and sociology. A wide group of researchers working in these fields, along with students and teachers, will benefit from this book.
Author : Amit Mehrotra
Publisher : Springer Science & Business Media
Page : 204 pages
File Size : 28,33 MB
Release : 2004
Category : Computers
ISBN : 9781402076572
Predicting noise in RF systems at the design stage is extremely important. This book concentrates on developing noise simulation techniques for RF circuits. The authors present a novel approach of performing noise analysis for RF circuits.
Author : Moshe Gitterman
Publisher : World Scientific
Page : 159 pages
File Size : 10,21 MB
Release : 2005-11-09
Category : Science
ISBN : 9814479284
This book contains comprehensive descriptions of stochastic processes described by underdamped and overdamped oscillator equations with additive and multiplicative random forcing. The latter is associated with random frequency or random damping. The coverage includes descriptions of various new phenomena discovered in the last hundred years since the explanation of Brownian motion by Einstein, Smoluchovski and Langevin, such as the shift of stable points, noise-enhanced stability, stochastic resonance, resonant activation, and stabilization of metastable states. In addition to many applications in physics, chemistry, biology, medicine, economics and sociology, these discoveries have clarified the deep relationship between determinism and stochasticity, which turns out to be complimentary rather than contradictory, with noise playing both constructive and destructive roles.
Author : Emad Eldin Hegazi
Publisher : Springer Science & Business Media
Page : 212 pages
File Size : 41,54 MB
Release : 2006-07-18
Category : Technology & Engineering
ISBN : 0387233652
try to predict it using mathematical expressions. His heuristic model without mathematical proof is almost universally accepted. However, it entails a c- cuit specific noise factor that is not known a priori and so is not predictive. In this work, we attempt to address the topic of oscillator design from a diff- ent perspective. By introducing a new paradigm that accurately captures the subtleties of phase noise we try to answer the question: 'why do oscillators behave in a particular way?' and 'what can be done to build an optimum design?' It is also hoped that the paradigm is useful in other areas of circuit design such as frequency synthesis and clock recovery. In Chapter 1, a general introduction and motivation to the subject is presented. Chapter 2 summarizes the fundamentals of phase noise and timing jitter and discusses earlier works on oscillator's phase noise analysis. Chapter 3 and Chapter 4 analyze the physical mechanisms behind phase noise generation in current-biased and Colpitts oscillators. Chapter 5 discusses design trade-offs and new techniques in LC oscillator design that allows optimal design. Chapter 6 and Chapter 7 discuss a topic that is typically ignored in oscillator design. That is flicker noise in LC oscillators. Finally, Chapter 8 is dedicated to the complete analysis of the role of varactors both in tuning and AM-FM noise conversion.
Author : Randall W. Rhea
Publisher : Artech House
Page : 466 pages
File Size : 34,88 MB
Release : 2014-05-14
Category : Technology & Engineering
ISBN : 1608070484
Oscillators are an essential part of all spread spectrum, RF, and wireless systems, and todayOCOs engineers in the field need to have a firm grasp on how they are designed. Presenting an easy-to-understand, unified view of the subject, this authoritative resource covers the practical design of high-frequency oscillators with lumped, distributed, dielectric and piezoelectric resonators. Including numerous examples, the book details important linear, nonlinear harmonic balance, transient and noise analysis techniques. Moreover, the book shows you how to apply these techniques to a wide range of oscillators. You gain the knowledge needed to create unique designs that elegantly match your specification needs. Over 360 illustrations and more than 330 equations support key topics throughout the book.