IUTAM Symposium on Nonlinear Instability and Transition in Three-Dimensional Boundary Layers


Book Description

Most fluid flows of practical importance are fully three-dimensional, so the non-linear instability properties of three-dimensional flows are of particular interest. In some cases the three-dimensionality may have been caused by a finite amplitude disturbance whilst, more usually, the unperturbed state is three-dimensional. Practical applications where transition is thought to be associated with non-linearity in a three- dimensional flow arise, for example, in aerodynamics (swept wings, engine nacelles, etc.), turbines and aortic blood flow. Here inviscid `cross-flow' disturbances as well as Tollmien-Schlichting and Görtler vortices can all occur simultaneously and their mutual non-linear behaviour must be understood if transition is to be predicted. The non-linear interactions are so complex that usually fully numerical or combined asymptotic/numerical methods must be used. Moreover, in view of the complexity of the instability processes, there is also a growing need for detailed and accurate experimental information. Carefully conducted tests allow us to identify those elements of a particular problem which are dominant. This assists in both the formulation of a relevant theoretical problem and the subsequent physical validation of predictions. It should be noted that the demands made upon the skills of the experimentalist are high and that the tests can be extremely sophisticated - often making use of the latest developments in flow diagnostic techniques, automated high speed data gathering, data analysis, fast processing and presentation.













Proceedings


Book Description




Nonlinear Instability of Nonparallel Flows


Book Description

The IUTAM Symposium on Nonlinear Instability of Nonparallel Flows was held at Clarkson University, Potsdam, NY 13699-5725, USA from 26 to 31 July 1993. It consisted of 9 general speeches, 35 lectures and 15 poster-seminar presentations. The papers were grouped in fairly focused sessions on boundary layers, shear flows, vortices, wakes, nonlinear waves and jets. The symposium was fol lowed by a workshop in which the subject matter discussed was sum marized and some further work for future investigation was recom mended. The highlights of the workshop will be reported elsewhere. In this book many of the papers that describe the ideas presented at the symposium are collected to provide a reference for researchers in charting the future course of their studies in the area of nonlinear instability of nonparallel flows. The papers in this book are grouped under the following headings: • Boundary layers and shear flows • Compressibility and thermal effects • Vortices and wakes • Nonlinear waves and jets In the lead paper ofthis book M. E. Goldstein describes an asymp totic theory of nonlinear interaction between two spatially growing oblique waves on nonparallel boundary and free-shear layers. The wave interaction originates from the nonlinear critical layer and is responsive to weakly nonparallel effects. The theory results in a sys tem of integral differential equations which appear to be relevant near the upper branch of the neutral curve.




Report


Book Description







Laminar-Turbulent Transition


Book Description

The International Union of Theoretical and Applied Mechanics (IUTAM) decided in 1992 to sponsor the fourth Symposium on Laminar-Turbulent Transition, Sendai/Japan, 1994. The objectives of the present Symposium were to deepen the fundamental knowledge of stability and laminar turbulent transition in three-dimensional and compressible flows and to contribute to recent developing technologies in the field. This Symposium followed the three previous IUTAM-Symposia (Stuttgart 1979, Novosibirsk 1984 and Toulouse 1989). The Scientific Committee selected two keynote lectures and 62 technical papers. The Symposium was held on the 5th to 9th of September, 1994, at the Sendai International Center in Sendai. The participants were 82 scientists from 10 countries. The keynote lectures have critically reviewed recent development of researches concerning the laminar-to-turbulent transition phenomena from the fundamental and the application aspects. Many papers presented were concerned about the detailed mechanism of the boundary layer transition (receptivity, secondary instability, turbulent spot and bypass transition). Particular emphasis was further placed on the transition of three-dimensional boundary layers on rotation systems and on swept wings. Attention was also given to compressible hypersonic flows.