Finite Precision Number Systems and Arithmetic


Book Description

Fundamental arithmetic operations support virtually all of the engineering, scientific, and financial computations required for practical applications, from cryptography, to financial planning, to rocket science. This comprehensive reference provides researchers with the thorough understanding of number representations that is a necessary foundation for designing efficient arithmetic algorithms. Using the elementary foundations of radix number systems as a basis for arithmetic, the authors develop and compare alternative algorithms for the fundamental operations of addition, multiplication, division, and square root with precisely defined roundings. Various finite precision number systems are investigated, with the focus on comparative analysis of practically efficient algorithms for closed arithmetic operations over these systems. Each chapter begins with an introduction to its contents and ends with bibliographic notes and an extensive bibliography. The book may also be used for graduate teaching: problems and exercises are scattered throughout the text and a solutions manual is available for instructors.




The Number Systems and Operations of Arithmetic


Book Description

The Number Systems and Operations of Arithmetic was written for the single purpose of explaining to elementary school teachers (both in-service and in-training) the nature of those basic principles of mathematics which form the foundations and structural framework of arithmetic, and how the familiar formal algorithms of arithmetic stem from these structural principles. The book is organized into two parts. Part I on number systems covers the origin of numerical thinking; natural operations with the natural numbers; natural laws for the natural operations; the inverse operations and convergence and the number systems generated by these operations; and classification of the number systems as abstract systems. Part II on computational algorithms discusses computations with natural numbers, rational numbers, real numbers, and complex numbers. The ""answers"" to all the exercises are also provided in the main body of the text and it is hoped that the student will form the habit of looking there for them.




Principles and Standards for School Mathematics


Book Description

This easy-to-read summary is an excellent tool for introducing others to the messages contained in Principles and Standards.




Foundations of Digital Logic Design


Book Description

This text is intended for a first course in digital logic design, at the sophomore or junior level, for electrical engineering, computer engineering and computer science programs, as well as for a number of other disciplines such as physics and mathematics. The book can also be used for self-study or for review by practicing engineers and computer scientists not intimately familiar with the subject. After completing this text, the student should be prepared for a second (advanced) course in digital design, switching and automata theory, microprocessors or computer organization. Request Inspection Copy




Helping Children Learn Mathematics


Book Description

Results from national and international assessments indicate that school children in the United States are not learning mathematics well enough. Many students cannot correctly apply computational algorithms to solve problems. Their understanding and use of decimals and fractions are especially weak. Indeed, helping all children succeed in mathematics is an imperative national goal. However, for our youth to succeed, we need to change how we're teaching this discipline. Helping Children Learn Mathematics provides comprehensive and reliable information that will guide efforts to improve school mathematics from pre-kindergarten through eighth grade. The authors explain the five strands of mathematical proficiency and discuss the major changes that need to be made in mathematics instruction, instructional materials, assessments, teacher education, and the broader educational system and answers some of the frequently asked questions when it comes to mathematics instruction. The book concludes by providing recommended actions for parents and caregivers, teachers, administrators, and policy makers, stressing the importance that everyone work together to ensure a mathematically literate society.




Arithmetic and Logic in Computer Systems


Book Description

Arithmetic and Logic in Computer Systems provides a useful guide to a fundamental subject of computer science and engineering. Algorithms for performing operations like addition, subtraction, multiplication, and division in digital computer systems are presented, with the goal of explaining the concepts behind the algorithms, rather than addressing any direct applications. Alternative methods are examined, and explanations are supplied of the fundamental materials and reasoning behind theories and examples. No other current books deal with this subject, and the author is a leading authority in the field of computer arithmetic. The text introduces the Conventional Radix Number System and the Signed-Digit Number System, as well as Residue Number System and Logarithmic Number System. This book serves as an essential, up-to-date guide for students of electrical engineering and computer and mathematical sciences, as well as practicing engineers and computer scientists involved in the design, application, and development of computer arithmetic units.




Multiple-Base Number System


Book Description

Computer arithmetic has become so fundamentally embedded into digital design that many engineers are unaware of the many research advances in the area. As a result, they are losing out on emerging opportunities to optimize its use in targeted applications and technologies. In many cases, easily available standard arithmetic hardware might not necessarily be the most efficient implementation strategy. Multiple-Base Number System: Theory and Applications stands apart from the usual books on computer arithmetic with its concentration on the uses and the mathematical operations associated with the recently introduced multiple-base number system (MBNS). The book identifies and explores several diverse and never-before-considered MBNS applications (and their implementation issues) to enhance computation efficiency, specifically in digital signal processing (DSP) and public key cryptography. Despite the recent development and increasing popularity of MBNS as a specialized tool for high-performance calculations in electronic hardware and other fields, no single text has compiled all the crucial, cutting-edge information engineers need to optimize its use. The authors’ main goal was to disseminate the results of extensive design research—including much of their own—to help the widest possible audience of engineers, computer scientists, and mathematicians. Dedicated to helping readers apply discoveries in advanced integrated circuit technologies, this single reference is packed with a wealth of vital content previously scattered throughout limited-circulation technical and mathematical journals and papers—resources generally accessible only to researchers and designers working in highly specialized fields. Leveling the informational playing field, this resource guides readers through an in-depth analysis of theory, architectural techniques, and the latest research on the subject, subsequently laying the groundwork users require to begin applying MBNS.







The History of Counting


Book Description

Drawing on years of research, a renowned archaeologist traces the evolution of counting. She shows how the concept of numbers came about, how various societies answered the question "How many?," and how our modern-day decimal system was developed. Engrossing and enlightening, this fascinating book introduces children to one of our most important inventions. 00-01 Utah Book Award (Informational Books) Notable Children's Trade Books in the Field of Social Studies 2000, National Council for SS & Child. Book Council




Number Systems and the Foundations of Analysis


Book Description

Geared toward undergraduate and beginning graduate students, this study explores natural numbers, integers, rational numbers, real numbers, and complex numbers. Numerous exercises and appendixes supplement the text. 1973 edition.