Obstacle Problems in Mathematical Physics


Book Description

The aim of this research monograph is to present a general account of the applicability of elliptic variational inequalities to the important class of free boundary problems of obstacle type from a unifying point of view of classical Mathematical Physics.The first part of the volume introduces some obstacle type problems which can be reduced to variational inequalities. Part II presents some of the main aspects of the theory of elliptic variational inequalities, from the abstract hilbertian framework to the smoothness of the variational solution, discussing in general the properties of the free boundary and including some results on the obstacle Plateau problem. The last part examines the application to free boundary problems, namely the lubrication-cavitation problem, the elastoplastic problem, the Signorini (or the boundary obstacle) problem, the dam problem, the continuous casting problem, the electrochemical machining problem and the problem of the flow with wake in a channel past a profile.




The obstacle problem


Book Description

The material presented here corresponds to Fermi lectures that I was invited to deliver at the Scuola Normale di Pisa in the spring of 1998. The obstacle problem consists in studying the properties of minimizers of the Dirichlet integral in a domain D of Rn, among all those configurations u with prescribed boundary values and costrained to remain in D above a prescribed obstacle F. In the Hilbert space H1(D) of all those functions with square integrable gradient, we consider the closed convex set K of functions u with fixed boundary value and which are greater than F in D. There is a unique point in K minimizing the Dirichlet integral. That is called the solution to the obstacle problem.




European Congress of Mathematics


Book Description

This is the second volume of the proceedings of the third European Congress of Mathematics. Volume I presents the speeches delivered at the Congress, the list of lectures, and short summaries of the achievements of the prize winners as well as papers by plenary and parallel speakers. The second volume collects articles by prize winners and speakers of the mini-symposia. This two-volume set thus gives an overview of the state of the art in many fields of mathematics and is therefore of interest to every professional mathematician.




Elliptic Differential Equations and Obstacle Problems


Book Description

In the few years since their appearance in the mid-sixties, variational inequalities have developed to such an extent and so thoroughly that they may now be considered an "institutional" development of the theory of differential equations (with appreciable feedback as will be shown). This book was written in the light of these considerations both in regard to the choice of topics and to their treatment. In short, roughly speaking my intention was to write a book on second-order elliptic operators, with the first half of the book, as might be expected, dedicated to function spaces and to linear theory whereas the second, nonlinear half would deal with variational inequalities and non variational obstacle problems, rather than, for example, with quasilinear or fully nonlinear equations (with a few exceptions to which I shall return later). This approach has led me to omit any mention of "physical" motivations in the wide sense of the term, in spite of their historical and continuing importance in the development of variational inequalities. I here addressed myself to a potential reader more or less aware of the significant role of variational inequalities in numerous fields of applied mathematics who could use an analytic presentation of the fundamental theory, which would be as general and self-contained as possible.




Regularity of Free Boundaries in Obstacle-Type Problems


Book Description

The regularity theory of free boundaries flourished during the late 1970s and early 1980s and had a major impact in several areas of mathematics, mathematical physics, and industrial mathematics, as well as in applications. Since then the theory continued to evolve. Numerous new ideas, techniques, and methods have been developed, and challenging new problems in applications have arisen. The main intention of the authors of this book is to give a coherent introduction to the study of the regularity properties of free boundaries for a particular type of problems, known as obstacle-type problems. The emphasis is on the methods developed in the past two decades. The topics include optimal regularity, nondegeneracy, rescalings and blowups, classification of global solutions, several types of monotonicity formulas, Lipschitz, $C^1$, as well as higher regularity of the free boundary, structure of the singular set, touch of the free and fixed boundaries, and more. The book is based on lecture notes for the courses and mini-courses given by the authors at various locations and should be accessible to advanced graduate students and researchers in analysis and partial differential equations.




The Obstacle Is the Way


Book Description

#1 Wall Street Journal Bestseller The Obstacle is the Way has become a cult classic, beloved by men and women around the world who apply its wisdom to become more successful at whatever they do. Its many fans include a former governor and movie star (Arnold Schwarzenegger), a hip hop icon (LL Cool J), an Irish tennis pro (James McGee), an NBC sportscaster (Michele Tafoya), and the coaches and players of winning teams like the New England Patriots, Seattle Seahawks, Chicago Cubs, and University of Texas men’s basketball team. The book draws its inspiration from stoicism, the ancient Greek philosophy of enduring pain or adversity with perseverance and resilience. Stoics focus on the things they can control, let go of everything else, and turn every new obstacle into an opportunity to get better, stronger, tougher. As Marcus Aurelius put it nearly 2000 years ago: “The impediment to action advances action. What stands in the way becomes the way.” Ryan Holiday shows us how some of the most successful people in history—from John D. Rockefeller to Amelia Earhart to Ulysses S. Grant to Steve Jobs—have applied stoicism to overcome difficult or even impossible situations. Their embrace of these principles ultimately mattered more than their natural intelligence, talents, or luck. If you’re feeling frustrated, demoralized, or stuck in a rut, this book can help you turn your problems into your biggest advantages. And along the way it will inspire you with dozens of true stories of the greats from every age and era.




Least-Squares Finite Element Methods


Book Description

Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.




Elliptic Differential Equations and Obstacle Problems


Book Description

In the few years since their appearance in the mid-sixties, variational inequalities have developed to such an extent and so thoroughly that they may now be considered an "institutional" development of the theory of differential equations (with appreciable feedback as will be shown). This book was written in the light of these considerations both in regard to the choice of topics and to their treatment. In short, roughly speaking my intention was to write a book on second-order elliptic operators, with the first half of the book, as might be expected, dedicated to function spaces and to linear theory whereas the second, nonlinear half would deal with variational inequalities and non variational obstacle problems, rather than, for example, with quasilinear or fully nonlinear equations (with a few exceptions to which I shall return later). This approach has led me to omit any mention of "physical" motivations in the wide sense of the term, in spite of their historical and continuing importance in the development of variational inequalities. I here addressed myself to a potential reader more or less aware of the significant role of variational inequalities in numerous fields of applied mathematics who could use an analytic presentation of the fundamental theory, which would be as general and self-contained as possible.




Good Strategy/Bad Strategy


Book Description

When Richard Rumelt's Good Strategy/Bad Strategy was published in 2011, it immediately struck a chord, calling out as bad strategy the mish-mash of pop culture, motivational slogans and business buzz speak so often and misleadingly masquerading as the real thing. Since then, his original and pragmatic ideas have won fans around the world and continue to help readers to recognise and avoid the elements of bad strategy and adopt good, action-oriented strategies that honestly acknowledge the challenges being faced and offer straightforward approaches to overcoming them. Strategy should not be equated with ambition, leadership, vision or planning; rather, it is coherent action backed by an argument. For Rumelt, the heart of good strategy is insight into the hidden power in any situation, and into an appropriate response - whether launching a new product, fighting a war or putting a man on the moon. Drawing on examples of the good and the bad from across all sectors and all ages, he shows how this insight can be cultivated with a wide variety of tools that lead to better thinking and better strategy, strategy that cuts through the hype and gets results.




Backward Stochastic Differential Equations


Book Description

This book presents the texts of seminars presented during the years 1995 and 1996 at the Université Paris VI and is the first attempt to present a survey on this subject. Starting from the classical conditions for existence and unicity of a solution in the most simple case-which requires more than basic stochartic calculus-several refinements on the hypotheses are introduced to obtain more general results.