Optimization of Complex Systems: Theory, Models, Algorithms and Applications


Book Description

This book contains 112 papers selected from about 250 submissions to the 6th World Congress on Global Optimization (WCGO 2019) which takes place on July 8–10, 2019 at University of Lorraine, Metz, France. The book covers both theoretical and algorithmic aspects of Nonconvex Optimization, as well as its applications to modeling and solving decision problems in various domains. It is composed of 10 parts, each of them deals with either the theory and/or methods in a branch of optimization such as Continuous optimization, DC Programming and DCA, Discrete optimization & Network optimization, Multiobjective programming, Optimization under uncertainty, or models and optimization methods in a specific application area including Data science, Economics & Finance, Energy & Water management, Engineering systems, Transportation, Logistics, Resource allocation & Production management. The researchers and practitioners working in Nonconvex Optimization and several application areas can find here many inspiring ideas and useful tools & techniques for their works.




Metaheuristics


Book Description

This book’s aim is to provide several different kinds of information: a delineation of general metaheuristics methods, a number of state-of-the-art articles from a variety of well-known classical application areas as well as an outlook to modern computational methods in promising new areas. Therefore, this book may equally serve as a textbook in graduate courses for students, as a reference book for people interested in engineering or social sciences, and as a collection of new and promising avenues for researchers working in this field.




Power System Optimization


Book Description

An original look from a microeconomic perspective for power system optimization and its application to electricity markets Presents a new and systematic viewpoint for power system optimization inspired by microeconomics and game theory A timely and important advanced reference with the fast growth of smart grids Professor Chen is a pioneer of applying experimental economics to the electricity market trading mechanism, and this work brings together the latest research A companion website is available Edit




Handbook of Optimization in Complex Networks


Book Description

Complex Social Networks is a newly emerging (hot) topic with applications in a variety of domains, such as communication networks, engineering networks, social networks, and biological networks. In the last decade, there has been an explosive growth of research on complex real-world networks, a theme that is becoming pervasive in many disciplines, ranging from mathematics and computer science to the social and biological sciences. Optimization of complex communication networks requires a deep understanding of the interplay between the dynamics of the physical network and the information dynamics within the network. Although there are a few books addressing social networks or complex networks, none of them has specially focused on the optimization perspective of studying these networks. This book provides the basic theory of complex networks with several new mathematical approaches and optimization techniques to design and analyze dynamic complex networks. A wide range of applications and optimization problems derived from research areas such as cellular and molecular chemistry, operations research, brain physiology, epidemiology, and ecology.




Control of Complex Systems


Book Description

In the era of cyber-physical systems, the area of control of complex systems has grown to be one of the hardest in terms of algorithmic design techniques and analytical tools. The 23 chapters, written by international specialists in the field, cover a variety of interests within the broader field of learning, adaptation, optimization and networked control. The editors have grouped these into the following 5 sections: "Introduction and Background on Control Theory, "Adaptive Control and Neuroscience, "Adaptive Learning Algorithms, "Cyber-Physical Systems and Cooperative Control, "Applications.The diversity of the research presented gives the reader a unique opportunity to explore a comprehensive overview of a field of great interest to control and system theorists. This book is intended for researchers and control engineers in machine learning, adaptive control, optimization and automatic control systems, including Electrical Engineers, Computer Science Engineers, Mechanical Engineers, Aerospace/Automotive Engineers, and Industrial Engineers. It could be used as a text or reference for advanced courses in complex control systems. • Collection of chapters from several well-known professors and researchers that will showcase their recent work • Presents different state-of-the-art control approaches and theory for complex systems • Gives algorithms that take into consideration the presence of modelling uncertainties, the unavailability of the model, the possibility of cooperative/non-cooperative goals and malicious attacks compromising the security of networked teams • Real system examples and figures throughout, make ideas concrete - Includes chapters from several well-known professors and researchers that showcases their recent work - Presents different state-of-the-art control approaches and theory for complex systems - Explores the presence of modelling uncertainties, the unavailability of the model, the possibility of cooperative/non-cooperative goals, and malicious attacks compromising the security of networked teams - Serves as a helpful reference for researchers and control engineers working with machine learning, adaptive control, and automatic control systems




Simulation of Complex Systems


Book Description

This book deals with the most fundamental and essential techniques to simulate complex systems, from the dynamics of molecules to the spreading of diseases, from optimization using ant colonies to the simulation of the Game of Life.




Control of Complex Systems


Book Description

The world of artificial systems is reaching complexity levels that es cape human understanding. Surface traffic, electricity distribution, air planes, mobile communications, etc. , are examples that demonstrate that we are running into problems that are beyond classical scientific or engi neering knowledge. There is an ongoing world-wide effort to understand these systems and develop models that can capture its behavior. The reason for this work is clear, if our lack of understanding deepens, we will lose our capability to control these systems and make they behave as we want. Researchers from many different fields are trying to understand and develop theories for complex man-made systems. This book presents re search from the perspective of control and systems theory. The book has grown out of activities in the research program Control of Complex Systems (COSY). The program has been sponsored by the Eu ropean Science Foundation (ESF) which for 25 years has been one of the leading players in stimulating scientific research. ESF is a European asso ciation of more than 60 leading national science agencies spanning more than 20 countries. ESF covers has standing committees in Medical Sci ences, Life and Environmental Sciences, Physical and Engineering Sci ences, Humanities and Social Sciences. The COSY program was ESF's first activity in the Engineering Sciences. The program run for a period of five years starting January 1995.




Thermodynamic Optimization of Complex Energy Systems


Book Description

A comprehensive assessment of the methodologies of thermodynamic optimization, exergy analysis and thermoeconomics, and their application to the design of efficient and environmentally sound energy systems. The chapters are organized in a sequence that begins with pure thermodynamics and progresses towards the blending of thermodynamics with other disciplines, such as heat transfer and cost accounting. Three methods of analysis stand out: entropy generation minimization, exergy (or availability) analysis, and thermoeconomics. The book reviews current directions in a field that is both extremely important and intellectually alive. Additionally, new directions for research on thermodynamics and optimization are revealed.




Mathematical Concepts and Applications in Mechanical Engineering and Mechatronics


Book Description

The application of mathematical concepts has proven to be beneficial within a number of different industries. In particular, these concepts have created significant developments in the engineering field. Mathematical Concepts and Applications in Mechanical Engineering and Mechatronics is an authoritative reference source for the latest scholarly research on the use of applied mathematics to enhance the current trends and productivity in mechanical engineering. Highlighting theoretical foundations, real-world cases, and future directions, this book is ideally designed for researchers, practitioners, professionals, and students of mechatronics and mechanical engineering.




Control of Complex Systems


Book Description

Since the begining of the sixties, control theorists have developed a large body of knowledge concerning complex or large-scale systems theory. Using the state space approach, their purpose was to extend methods to cope with the increasingly sophisticated automation needs of man-made systems. Despite several remarkable contributions, and some successful applications, it can be stated that this theory has not yet become an engineering tool. On the other hand, the emergence of cheap and reliable microprocessors has profoundly transformed industrial instrumentation and control systems. Process control equipment is organized in multilevel distributed structures, closely related to the concepts introduced by complex systems control theory. This similarity should favor a fruitful intersection for practical applications. However, a gap still exists between the literature on control theory and the world of technological achievements. In the many books on complex systems, few have given attention to the technological aspects of a practical control problem. The present book is an attempt to fill this gap. To do this, it consistently reflects the viewpoints that: - Theory and technology are two indivisible facets of the same problem. -On-line implementation for real time applications is the ultimate goal of a control study.