The Oxford Handbook of Generality in Mathematics and the Sciences


Book Description

Generality is a key value in scientific discourses and practices. Throughout history, it has received a variety of meanings and of uses. This collection of original essays aims to inquire into this diversity. Through case studies taken from the history of mathematics, physics and the life sciences, the book provides evidence of different ways of understanding the general in various contexts. It aims at showing how collectives have valued generality and how they have worked with specific types of "general" entities, procedures, and arguments. The books connects history and philosophy of mathematics and the sciences at the intersection of two of the most fruitful contemporary lines of research: historical epistemology, in which values (e.g. "objectivity", "accuracy") are studied from a historical viewpoint; and the philosophy of scientific practice, in which conceptual developments are seen as embedded in networks of social, instrumental, and textual practices. Each chapter provides a self-contained case-study, with a clear exposition of the scientific content at stake. The collection covers a wide range of scientific domains - with an emphasis on mathematics - and historical periods. It thus allows a comparative perspective which suggests a non-linear pattern for a history of generality. The introductory chapter spells out the key issues and points to the connections between the chapters.




The Oxford Handbook of Generality in Mathematics and the Sciences


Book Description

This collection of original essays aims to inquire into the diversity of Generality. Through case studies taken from the history of mathematics, physics and the life sciences, the book provides evidence of different ways of understanding the general in various contexts.




Mathematical Book Histories


Book Description




Mastering the History of Pure and Applied Mathematics


Book Description

The present collection of essays are published in honor of the distinguished historian of mathematics Professor Emeritus Jesper Lützen. In a career that spans more than four decades, Professor Lützen's scholarly contributions have enhanced our understanding of the history, development, and organization of mathematics. The essays cover a broad range of areas connected to Professor Lützen's work. In addition to this noteworthy scholarship, Professor Lützen has always been an exemplary colleague, providing support to peers as well as new faculty and graduate students. We dedicate this Festschrift to Professor Lützen—as a scholarly role model, mentor, colleague, and friend.







The Richness of the History of Mathematics


Book Description

This book, a tribute to historian of mathematics Jeremy Gray, offers an overview of the history of mathematics and its inseparable connection to philosophy and other disciplines. Many different approaches to the study of the history of mathematics have been developed. Understanding this diversity is central to learning about these fields, but very few books deal with their richness and concrete suggestions for the “what, why and how” of these domains of inquiry. The editors and authors approach the basic question of what the history of mathematics is by means of concrete examples. For the “how” question, basic methodological issues are addressed, from the different perspectives of mathematicians and historians. Containing essays by leading scholars, this book provides a multitude of perspectives on mathematics, its role in culture and development, and connections with other sciences, making it an important resource for students and academics in the history and philosophy of mathematics.




Osiris, Volume 38


Book Description

Perceptively explores the shifting intersections between algorithmic systems and human practices in the modern era. How have algorithmic systems and human practices developed in tandem since 1800? This volume of Osiris deftly addresses the question, dispelling along the way the traditional notion of algorithmic “code” and human “craft” as natural opposites. Instead, algorithms and humans have always acted in concert, depending on each other to advance new knowledge and produce social consequences. By shining light on alternative computational imaginaries, Beyond Craft and Code opens fresh space in which to understand algorithmic diversity, its governance, and even its conservation. The volume contains essays by experts in fields extending from early modern arithmetic to contemporary robotics. Traversing a range of cases and arguments that connect politics, historical epistemology, aesthetics, and artificial intelligence, the contributors collectively propose a novel vocabulary of concepts with which to think about how the history of science can contribute to understanding today’s world. Ultimately, Beyond Craft and Code reconfigures the historiography of science and technology to suggest a new way to approach the questions posed by an algorithmic culture—not only improving our understanding of algorithmic pasts and futures but also unlocking our ability to better govern our present.




The Best Writing on Mathematics 2017


Book Description

The year's finest mathematics writing from around the world This annual anthology brings together the year’s finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2017 makes available to a wide audience many articles not easily found anywhere else—and you don’t need to be a mathematician to enjoy them. These writings offer surprising insights into the nature, meaning, and practice of mathematics today. They delve into the history, philosophy, teaching, and everyday occurrences of math, and take readers behind the scenes of today’s hottest mathematical debates. Here Evelyn Lamb describes the excitement of searching for incomprehensibly large prime numbers, Jeremy Gray speculates about who would have won math’s highest prize—the Fields Medal—in the nineteenth century, and Philip Davis looks at mathematical results and artifacts from a business and marketing viewpoint. In other essays, Noson Yanofsky explores the inherent limits of knowledge in mathematical thinking, Jo Boaler and Lang Chen reveal why finger-counting enhances children’s receptivity to mathematical ideas, and Carlo Séquin and Raymond Shiau attempt to discover how the Renaissance painter Fra Luca Pacioli managed to convincingly depict his famous rhombicuboctahedron, a twenty-six-sided Archimedean solid. And there’s much, much more. In addition to presenting the year’s most memorable writings on mathematics, this must-have anthology includes a bibliography of other notable writings and an introduction by the editor, Mircea Pitici. This book belongs on the shelf of anyone interested in where math has taken us—and where it is headed.




Mathematical Communities in the Reconstruction After the Great War 1918–1928


Book Description

This book is a consequence of the international meeting organized in Marseilles in November 2018 devoted to the aftermath of the Great War for mathematical communities. It features selected original research presented at the meeting offering a new perspective on a period, the 1920s, not extensively considered by historiography. After 1918, new countries were created, and borders of several others were modified. Territories were annexed while some countries lost entire regions. These territorial changes bear witness to the massive and varied upheavals with which European societies were confronted in the aftermath of the Great War. The reconfiguration of political Europe was accompanied by new alliances and a redistribution of trade – commercial, intellectual, artistic, military, and so on – which largely shaped international life during the interwar period. These changes also had an enormous impact on scientific life, not only in practice, but also in its organization and communication strategies. The mathematical sciences, which from the late 19th century to the 1920s experienced a deep disciplinary evolution, were thus facing a double movement, internal and external, which led to a sustainable restructuring of research and teaching. Concomitantly, various areas such as topology, functional analysis, abstract algebra, logic or probability, among others, experienced exceptional development. This was accompanied by an explosion of new international or national associations of mathematicians with for instance the founding, in 1918, of the International Mathematical Union and the controversial creation of the International Research Council. Therefore, the central idea for the articulation of the various chapters of the book is to present case studies illustrating how in the aftermath of the war, many mathematicians had to organize their personal trajectories taking into account the evolution of the political, social and scientific environment which had taken place at the end of the conflict.




Development Of Mathematics Between The World Wars, The: Case Studies, Examples And Analyses


Book Description

The Development of Mathematics Between the World Wars traces the transformation of scientific life within mathematical communities during the interwar period in Central and Eastern Europe, specifically in Germany, Russia, Poland, Hungary, and Czechoslovakia. Throughout the book, in-depth mathematical analyses and examples are included for the benefit of the reader.World War I heavily affected academic life. In European countries, many talented researchers and students were killed in action and scientific activities were halted to resume only in the postwar years. However, this inhibition turned out to be a catalyst for the birth of a new generation of mathematicians, for the emergence of new ideas and theories and for the surprising creation of new and outstanding scientific schools.The final four chapters are not restricted to Central and Eastern Europe and deal with the development of mathematics between World War I and World War II. After describing the general state of mathematics at the end of the 19th century and the first third of the 20th century, three case studies dealing with selected mathematical disciplines are presented (set theory, potential theory, combinatorics), in a way accessible to a broad audience of mathematicians as well as historians of mathematics.