The Peroxidase Multigene Family of Enzymes


Book Description

In September 1998 experts from 19 countries came together for an interdisciplinary discussion of the function of animal peroxidases, a family of enzymes embracing myeloperoxidase, eosinophil peroxidase, thyroid peroxidase and lactoperoxidase. Their papers have been updated for publication, yielding a wide-ranging overview of the state of the art. The chapters cover a wide range of topics, including three-dimensional structure of representative family members, their biosynthesis and intracellular transport, mechanism of action as well as applications to clinical medicine. They are of clinical relevance in, for example, arteriosclerosis, multiple sclerosis, infections, tumorigenesis, rheumatic diseases and hypothyroidism. This book forms an excellent introduction for anyone interested in the peroxidase family of enzymes.




The Peroxidase Multigene Family of Enzymes


Book Description

In September 1998 experts from 19 countries came together for an interdisciplinary discussion of the function of animal peroxidases, a family of enzymes embracing myeloperoxidase, eosinophil peroxidase, thyroid peroxidase and lactoperoxidase. Their papers have been updated for publication, yielding a wide-ranging overview of the state of the art. The chapters cover a wide range of topics, including three-dimensional structure of representative family members, their biosynthesis and intracellular transport, mechanism of action as well as applications to clinical medicine. They are of clinical relevance in, for example, arteriosclerosis, multiple sclerosis, infections, tumorigenesis, rheumatic diseases and hypothyroidism. This book forms an excellent introduction for anyone interested in the peroxidase family of enzymes.







Mammalian Heme Peroxidases


Book Description

Mammalian heme peroxidase enzymes play a critical role in innate immune responses and disease prevention. The formation of potent chemical oxidants is essential to this protective physiologic activity in immunity. Although highly beneficial in the context of immune defense, it is now well established that peroxidases and their overproduction of oxidants contribute to the initiation and persistence of many chronic inflammatory conditions in the cardiovascular, neurologic, respiratory, renal, and gastrointestinal systems. Peroxidasins, a protein family related to heme peroxidases, play a novel role in tissue biogenesis and matrix assembly, which are also attracting attention in different pathological contexts. Given the diverse roles of mammalian heme peroxidases and the breadth and incidence of pathologies associated with these enzymes, there has been significant interest in modulating peroxidase activity as a therapeutic strategy. This book highlights recent developments in our understanding of the chemistry, biochemistry and biological roles of mammalian peroxidases and their associated oxidants, their involvement in both innate immunity and chronic inflammatory disease in a variety of end organs, and potential therapeutic approaches to modulate and prevent damaging reactions. Key Features Structure and biosynthesis of mammalian peroxidases Reactivity of hypohalous acids with biological substrates Peroxidases in innate immunity Peroxidases in human pathology Modulation of peroxidase-induced biological damage




Oxidative Stress in Plants


Book Description

Plants depend on physiological mechanisms to combat adverse environmental conditions, such as pathogen attack, wounding, drought, cold, freezing, salt, UV, intense light, heavy metals and SO2. Many of these cause excess production of active oxygen species in plant cells. Plants have evolved complex defense systems against such oxidative stress. The




Abiotic Stress Alleviation in Plants: Morpho-Physiological and Molecular Aspects


Book Description

Plants are constantly exposed to changing environmental conditions. Abiotic stresses cause adverse effects on plant growth, development, survival, and yield. It is essential to improve plant responses to such environmental conditions to achieve sustainable crop growth, development, and productivity. The activation of plant stress signaling mechanisms is crucial to address the adverse impacts of environmental factors on plant growth and productivity. Phytoprotectants, including signaling molecules, play crucial roles in the activation of plant physiological and molecular mechanisms to withstand the negative effects of abiotic stress on plants. Investigation of physiological, biochemical, and metabolic pathways associated with plant adaptation to abiotic stress will help identify the key players involved in plant abiotic stress tolerance mechanisms. The sensing, signaling, and gene regulatory mechanisms that help plants cope with abiotic stress must be fully explored.




Drought Stress Tolerance in Plants, Vol 1


Book Description

Abiotic stress adversely affects crop production worldwide, decreasing average yields for most of the crops to 50%. Among various abiotic stresses affecting agricultural production, drought stress is considered to be the main source of yield reduction around the globe. Due to an increasing world population, drought stress will lead to a serious food shortage by 2050. The situation may become worse due to predicated global climate change that may multiply the frequency and duration and severity of such abiotic stresses. Hence, there is an urgent need to improve our understanding on complex mechanisms of drought stress tolerance and to develop modern varieties that are more resilient to drought stress. Identification of the potential novel genes responsible for drought tolerance in crop plants will contribute to understanding the molecular mechanism of crop responses to drought stress. The discovery of novel genes, the analysis of their expression patterns in response to drought stress, and the determination of their potential functions in drought stress adaptation will provide the basis of effective engineering strategies to enhance crop drought stress tolerance. Although the in-depth water stress tolerance mechanisms is still unclear, it can be to some extent explained on the basis of ion homeostasis mediated by stress adaptation effectors, toxic radical scavenging, osmolyte biosynthesis, water transport, and long distance signaling response coordination. Importantly, complete elucidation of the physiological, biochemical, and molecular mechanisms for drought stress, perception, transduction, and tolerance is still a challenge to the plant biologists. The findings presented in volume 1 call attention to the physiological and biochemical modalities of drought stress that influence crop productivity, whereas volume 2 summarizes our current understanding on the molecular and genetic mechanisms of drought stress resistance in plants.




How Tobacco Smoke Causes Disease


Book Description

This report considers the biological and behavioral mechanisms that may underlie the pathogenicity of tobacco smoke. Many Surgeon General's reports have considered research findings on mechanisms in assessing the biological plausibility of associations observed in epidemiologic studies. Mechanisms of disease are important because they may provide plausibility, which is one of the guideline criteria for assessing evidence on causation. This report specifically reviews the evidence on the potential mechanisms by which smoking causes diseases and considers whether a mechanism is likely to be operative in the production of human disease by tobacco smoke. This evidence is relevant to understanding how smoking causes disease, to identifying those who may be particularly susceptible, and to assessing the potential risks of tobacco products.




Biocatalysis Based on Heme Peroxidases


Book Description

The last systematic description of heme peroxidases was published in 1999 by Brian Dunford, from the University of Alberta in Canada. The book Heme per- idases covers discussion on three-dimensional structure, reaction mechanism, kinetics, and spectral properties of representative enzymes from bacterial, plant, fungal, and animal origin. Since 1999, vast information on basic but also applied aspects of heme peroxidases has been generated. We believe fusion of these two aspects will bene?t research of those dedicated to development of biocatalytic process. The aim of this book is to present recent advances on basic aspects such as evolution, structure–function relation, and catalytic mechanism, as well as applied aspects, such as bioreactor and protein engineering, in order to provide the tools for rational design of enhanced biocatalysts and biocatalytic processes. The book does not include an exhaustive listing of references but rather a selected collection to enrich discussion and to allow envisioning future directions for research. This book is organized in three parts. In Part I, current knowledge of structure and mechanism of peroxidases is covered. From the molecular phylogeny, going through the in?uence of structural factors over oxidative ability to the molecular mechanism of catalysis, the authors intend to provide an understanding of per- idases at the molecular level. The understanding of the fundamental behavior of peroxidases will allow further adequation, design, and/or optimization of pero- dase-based catalysis to a particular process. In Part II, research on potential applications of peroxidases in several ?elds is presented and discussed.




Wintrobe's Clinical Hematology


Book Description

Publisher's Note: Products purchased from 3rd Party sellers are not guaranteed by the Publisher for quality, authenticity, or access to any online entitlements included with the product. This extensive title, which combines scientific principles with up-to-date clinical procedures, has been thoroughly updated for the fourteenth edition. You’ll find in-depth material on the biology and pathophysiology of lymphomas, leukemias, platelet destruction, and other hematological disorders as well as the procedures for diagnosing and treating them.