The Physical Principles of the Quantum Theory


Book Description

Nobel Laureate discusses quantum theory, uncertainty, wave mechanics, work of Dirac, Schroedinger, Compton, Einstein, others. "An authoritative statement of Heisenberg's views on this aspect of the quantum theory." — Nature.




The Principles of Quantum Theory, From Planck's Quanta to the Higgs Boson


Book Description

The book considers foundational thinking in quantum theory, focusing on the role the fundamental principles and principle thinking there, including thinking that leads to the invention of new principles, which is, the book contends, one of the ultimate achievements of theoretical thinking in physics and beyond. The focus on principles, prominent during the rise and in the immediate aftermath of quantum theory, has been uncommon in more recent discussions and debates concerning it. The book argues, however, that exploring the fundamental principles and principle thinking is exceptionally helpful in addressing the key issues at stake in quantum foundations and the seemingly interminable debates concerning them. Principle thinking led to major breakthroughs throughout the history of quantum theory, beginning with the old quantum theory and quantum mechanics, the first definitive quantum theory, which it remains within its proper (nonrelativistic) scope. It has, the book also argues, been equally important in quantum field theory, which has been the frontier of quantum theory for quite a while now, and more recently, in quantum information theory, where principle thinking was given new prominence. The approach allows the book to develop a new understanding of both the history and philosophy of quantum theory, from Planck’s quantum to the Higgs boson, and beyond, and of the thinking the key founding figures, such as Einstein, Bohr, Heisenberg, Schrödinger, and Dirac, as well as some among more recent theorists. The book also extensively considers the nature of quantum probability, and contains a new interpretation of quantum mechanics, “the statistical Copenhagen interpretation.” Overall, the book’s argument is guided by what Heisenberg called “the spirit of Copenhagen,” which is defined by three great divorces from the preceding foundational thinking in physics—reality from realism, probability from causality, and locality from relativity—and defined the fundamental principles of quantum theory accordingly.




Scientific Review Papers, Talks, and Books Wissenschaftliche Übersichtsartikel, Vorträge und Bücher


Book Description

vii FOREWORD TO THE ENGLISH EDITION The lectures which I gave at the University of Chicago ix It is an unusual pleasure to present Professor Heisen­ in the spring of 1929 afforded me the opportunity of re­ berg's Chicago lectures on "The Physical Principles of viewing the fundamental principles of quantum theory. the Quantum Theory" to a wider audience than could Since the conclusive studies of Bohr in 1927 there have attend them when they were originally delivered. Pro­ been no essential changes in these principles, and many fessor Heisenberg's leading place in the development of new experiments have confirmed important consequences the new quantum mechanics is well recognized by those of the theory (for example, the Raman effect). But even who have been following its growth. It was in fact he who today the physicist more often has a kind of faith in the first saw clearly that in the older forms of quantum theory we were describing our spectra in terms of atomic mecha­ correctness of the new principles than a clear understa- nisms regarding which we could gain no definite knowl­ ing of them. For this reason the publication of these C- cago lectures in the form of a small book seems justified. edge, anq who first found a way to interpret (or at least describe) spectroscopic phenomena without assuming Since the formal mathematical apparatus of the quan­ the existence of such atomic mechanisms.




Variational Principles in Dynamics and Quantum Theory


Book Description

DIVHistorical, theoretical survey with many insights, much hard-to-find material. Hamilton’s principle, Hamilton-Jacobi equation, etc. /div




The Principles of Quantum Mechanics


Book Description

The first edition of this work appeared in 1930, and its originality won it immediate recognition as a classic of modern physical theory. The fourth edition has been bought out to meet a continued demand. Some improvements have been made, the main one being the complete rewriting of the chapter on quantum electrodymanics, to bring in electron-pair creation. This makes it suitable as an introduction to recent works on quantum field theories.




Quantum Theory from First Principles


Book Description

A new presentation of quantum theory and quantum information based on fundamental principles, for anyone seeking a deeper understanding of the subject.




Principles of Quantum Mechanics


Book Description

This text presents a rigorous mathematical account of the principles of quantum mechanics, in particular as applied to chemistry and chemical physics. Applications are used as illustrations of the basic theory. The first two chapters serve as an introduction to quantum theory, although it is assumed that the reader has been exposed to elementary quantum mechanics as part of an undergraduate physical chemistry or atomic physics course. Following a discussion of wave motion leading to Schrödinger's wave mechanics, the postulates of quantum mechanics are presented along with essential mathematical concepts and techniques. The postulates are rigorously applied to the harmonic oscillator, angular momentum, the hydrogen atom, the variation method, perturbation theory, and nuclear motion. Modern theoretical concepts such as hermitian operators, Hilbert space, Dirac notation, and ladder operators are introduced and used throughout. This text is appropriate for beginning graduate students in chemistry, chemical physics, molecular physics and materials science.




The Mathematical Principles of Quantum Mechanics


Book Description

Focusing on the principles of quantum mechanics, this text for upper-level undergraduates and graduate students introduces and resolves special physical problems with more than 100 exercises. 1967 edition.




Principles of Quantum Mechanics


Book Description

R. Shankar has introduced major additions and updated key presentations in this second edition of Principles of Quantum Mechanics. New features of this innovative text include an entirely rewritten mathematical introduction, a discussion of Time-reversal invariance, and extensive coverage of a variety of path integrals and their applications. Additional highlights include: - Clear, accessible treatment of underlying mathematics - A review of Newtonian, Lagrangian, and Hamiltonian mechanics - Student understanding of quantum theory is enhanced by separate treatment of mathematical theorems and physical postulates - Unsurpassed coverage of path integrals and their relevance in contemporary physics The requisite text for advanced undergraduate- and graduate-level students, Principles of Quantum Mechanics, Second Edition is fully referenced and is supported by many exercises and solutions. The book’s self-contained chapters also make it suitable for independent study as well as for courses in applied disciplines.




Quantum Mechanics of Particles and Wave Fields


Book Description

A complete explanation of quantum mechanics, from its early non-relativistic formulation to the complex field theories used so extensively in modern theoretical research, this volume assumes no specialized knowledge of the subject. It stresses relativistic quantum mechanics, since this subject plays such an important role in research, explaining the principles clearly and imparting an accurate understanding of abstract concepts. This text deals with quantum mechanics from its earliest developments, covering both the quantum mechanics of wave fields and the older quantum theory of particles. The final chapter culminates with the author's presentation of his revolutionary theory of fundamental length--a concept designed to meet many of quantum theory's longstanding basic difficulties.