The Physics of Microdroplets


Book Description

The Physics of Microdroplets gives the reader the theoretical and numerical tools to understand, explain, calculate, and predict the often nonintuitive observed behavior of droplets in microsystems. Microdrops and interfaces are now a common feature in most fluidic microsystems, from biology, to biotechnology, materials science, 3D-microelectronics, optofluidics, and mechatronics. On the other hand, the behavior of droplets and interfaces in today's microsystems is complicated and involves complex 3D geometrical considerations. From a numerical standpoint, the treatment of interfaces separating different immiscible phases is difficult. After a chapter dedicated to the general theory of wetting, this practical book successively details: The theory of 3D liquid interfaces The formulas for volume and surface of sessile and pancake droplets The behavior of sessile droplets The behavior of droplets between tapered plates and in wedges The behavior of droplets in microchannels The effect of capillarity with the analysis of capillary rise The onset of spontaneous capillary flow in open microfluidic systems The interaction between droplets, like engulfment The theory and application of electrowetting The state of the art for the approach of 3D-microelectronics using capillary alignment




Micro-Drops and Digital Microfluidics


Book Description

After spending over 12 years developing new microsystems for biotechnology – especially concerned with the microfluidic aspects of these devices – Jean Berthier is considered a leading authority in the field. Now, following the success of his book, Microfluidics for Biotechnology, Dr. Berthier returns to explain how new miniaturization techniques have dramatically expanded the area of microfluidic applications and microsystems into microdrops and digital microfluidics.Engineers interested in designing more versatile microsystems and students who seek to learn the fundamentals of microfluidics will all appreciate the wide-range of information found within Microdrops and Digital Microfluidics. The most recent developments in digital microfluidics are described in clear detail, with a specific focus on the computational, theoretical and experimental study of microdrops. - Over 500 equations and more than 400 illustrations - Authoritative reporting on the latest changes in microfluidic science, where microscopic liquid volumes are handled as "microdrops" and separately from "nanodrops" - A methodical examination of how liquid microdrops behave in the complex geometries of modern miniaturized systems and interact with different morphological (micro-fabricated, textured) solid substrates - A thorough explanation of how capillary forces act on liquid interfaces in contact with micro-fabricated surfaces - Analysis of how droplets can be manipulated, handled, or transported using electric fields (electrowetting), acoustic actuation (surface acoustic waves), or by a carrier liquid (microflow) - A fresh perspective on the future of microfluidics




Open Microfluidics


Book Description

Open microfluidics or open-surface is becoming fundamental in scientific domains such as biotechnology, biology and space. First, such systems and devices based on open microfluidics make use of capillary forces to move fluids, without any need for external energy. Second, the "openness" of the flow facilitates the accessibility to the liquid in biotechnology and biology, and reduces the weight in space applications. This book has been conceived to give the reader the fundamental basis of open microfluidics. It covers successively The theory of spontaneous capillary flow, with the general conditions for spontaneous capillary flow, and the dynamic aspects of such flows. The formation of capillary filaments which are associated to small contact angles and sharp grooves. The study of capillary flow in open rectangular, pseudo-rectangular and trapezoidal open microchannels. The dynamics of open capillary flows in grooves with a focus on capillary resistors. The case of very viscous liquids is analyzed. An analysis of suspended capillary flows: such flows move in suspended channels devoid of top cover and bottom plate. Their accessibility is reinforced, and such systems are becoming fundamental in biology. An analysis of “rails” microfluidics, which are flows that move in channels devoid of side walls. This geometry has the advantage to be compatible with capillary networks, which are now of great interest in biotechnology, for molecular detection for example. Paper-based microfluidics where liquids wick flat paper matrix. Applications concern bioassays such as point of care devices (POC). Thread-based microfluidics is a new domain of investigation. It is seeing presently many new developments in the domain of separation and filtration, and opens the way to smart bandages and tissue engineering. The book is intended to cover the theoretical aspects of open microfluidics, experimental approaches, and examples of application.




Droplet Microfluidics


Book Description

Droplet microfluidics offers tremendous potential as an enabling technology for high-throughput screening. It promises to yield novel techniques for personalised medicine, drug discovery, disease diagnosis, establishing chemical libraries, and the discovery of new materials. Despite the enormous potential to contribute to a broad range of applications, the expected adoption has not yet been seen, partly due to the interdisciplinary nature and the fact that, up until now, information has been scattered across the literature. This book goes a long way to addressing these issues. Edited by two leaders, this book has drawn together expertise from around the globe to form a unified, cohesive resource for the droplet microfluidics community. Starting with the basic theory of droplet microfluidics before introducing its use as a tool, the reader will be treated to chapters on important techniques, including robust passive and active droplet manipulations and applications such as single cell analysis, which is key for drug discovery. This book is a go-to resource for the community yearning to adopt and promote droplet microfluidics into different applications and will interest researchers and practitioners working across chemistry, biology, physics, materials science, micro- and nano-technology, and engineering.




Microdroplet Technology


Book Description

Microdroplet technology has recently emerged to provide new and diverse applications via microfluidic functionality, especially in various areas of biology and chemistry. This book, then, gives an overview of the principle components and wide-ranging applications for state-of-the-art of droplet-based microfluidics. Chapter authors are internationally-leading researchers from chemistry, biology, physics and engineering that present various key aspects of micrdroplet technology -- fundamental flow physics, methodology and components for flow control, applications in biology and chemistry, and a discussion of future perspectives. This book acts as a reference for academics, post-graduate students, and researcher wishing to deepen their understand of microfluidics and introduce optimal design and operation of new droplet-based microfluidic devices for more comprehensive analyte assessments.




Encyclopedia of Analytical Science


Book Description

The third edition of the Encyclopedia of Analytical Science, Ten Volume Set is a definitive collection of articles covering the latest technologies in application areas such as medicine, environmental science, food science and geology. Meticulously organized, clearly written and fully interdisciplinary, the Encyclopedia of Analytical Science, Ten Volume Set provides foundational knowledge across the scope of modern analytical chemistry, linking fundamental topics with the latest methodologies. Articles will cover three broad areas: analytical techniques (e.g., mass spectrometry, liquid chromatography, atomic spectrometry); areas of application (e.g., forensic, environmental and clinical); and analytes (e.g., arsenic, nucleic acids and polycyclic aromatic hydrocarbons), providing a one-stop resource for analytical scientists. Offers readers a one-stop resource with access to information across the entire scope of modern analytical science Presents articles split into three broad areas: analytical techniques, areas of application and and analytes, creating an ideal resource for students, researchers and professionals Provides concise and accessible information that is ideal for non-specialists and readers from undergraduate levels and higher




Labs on Chip


Book Description

Labs on Chip: Principles, Design and Technology provides a complete reference for the complex field of labs on chip in biotechnology. Merging three main areas— fluid dynamics, monolithic micro- and nanotechnology, and out-of-equilibrium biochemistry—this text integrates coverage of technology issues with strong theoretical explanations of design techniques. Analyzing each subject from basic principles to relevant applications, this book: Describes the biochemical elements required to work on labs on chip Discusses fabrication, microfluidic, and electronic and optical detection techniques Addresses planar technologies, polymer microfabrication, and process scalability to huge volumes Presents a global view of current lab-on-chip research and development Devotes an entire chapter to labs on chip for genetics Summarizing in one source the different technical competencies required, Labs on Chip: Principles, Design and Technology offers valuable guidance for the lab-on-chip design decision-making process, while exploring essential elements of labs on chip useful both to the professional who wants to approach a new field and to the specialist who wants to gain a broader perspective.




Liquid-Liquid Phase Coexistence and Membraneless Organelles


Book Description

Methods in Enzymology, Volume 646, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Chapters in this new release include Methods for Studying RNA condensation/granules in vitro, RNA Dynamics in Intracellular Condensates, Methods for Viscoelastic Characterization of Liquid and Gel Condensates, Incorporating Proteins into Complex Coacervates, Methods for Study of Liquid-Liquid Phase Coexistence in Proximity to Lipid Membranes, Preparation of and Solute Partitioning in Multiphase Coacervates, Reversible photocontrol of DNA coacervation, Enzymatic Control over Coacervation, and much more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Methods in Enzymology series




Open Microfluidics


Book Description

Open microfluidics or open-surface is becoming fundamental in scientific domains such as biotechnology, biology and space. First, such systems and devices based on open microfluidics make use of capillary forces to move fluids, without any need for external energy. Second, the "openness" of the flow facilitates the accessibility to the liquid in biotechnology and biology, and reduces the weight in space applications. This book has been conceived to give the reader the fundamental basis of open microfluidics. It covers successively The theory of spontaneous capillary flow, with the general conditions for spontaneous capillary flow, and the dynamic aspects of such flows. The formation of capillary filaments which are associated to small contact angles and sharp grooves. The study of capillary flow in open rectangular, pseudo-rectangular and trapezoidal open microchannels. The dynamics of open capillary flows in grooves with a focus on capillary resistors. The case of very viscous liquids is analyzed. An analysis of suspended capillary flows: such flows move in suspended channels devoid of top cover and bottom plate. Their accessibility is reinforced, and such systems are becoming fundamental in biology. An analysis of “rails” microfluidics, which are flows that move in channels devoid of side walls. This geometry has the advantage to be compatible with capillary networks, which are now of great interest in biotechnology, for molecular detection for example. Paper-based microfluidics where liquids wick flat paper matrix. Applications concern bioassays such as point of care devices (POC). Thread-based microfluidics is a new domain of investigation. It is seeing presently many new developments in the domain of separation and filtration, and opens the way to smart bandages and tissue engineering. The book is intended to cover the theoretical aspects of open microfluidics, experimental approaches, and examples of application.




Nanodroplets


Book Description

Nanodroplets, the basis of complex and advanced nanostructures such as quantum rings, quantum dots and quantum dot clusters for future electronic and optoelectronic materials and devices, have attracted the interdisciplinary interest of chemists, physicists and engineers. This book combines experimental and theoretical analyses of nanosized droplets which reveal many attractive properties. Coverage includes nanodroplet synthesis, structure, unique behaviors and their nanofabrication, including chapters on focused ion beam, atomic force microscopy, molecular beam epitaxy and the "vapor-liquid- solid" route. Particular emphasis is given to the behavior of metallic nanodroplets, water nanodroplets and nanodroplets in polymer and metamaterial nanocomposites. The contributions of leading scientists and their research groups will provide readers with deeper insight into the chemical and physical mechanisms, properties, and potential applications of various nanodroplets.