The Physics of Microfabrication


Book Description

The Physical Electronics Department of SRI International (formerly Stanford Research Institute) has been pioneering the development of devices fabricated to submicron tolerances for well over 20 years. In 1961, a landmark paper on electron-beam lithography and its associated technologies was published by K. R. Shoulderst (then at SRI), which set the stage for our subsequent efforts in this field. He had the foresight to believe that the building of such small devices was actually within the range of human capabilities. As a result of this initial momentum, our experience in the technologies associated with microfabrication has become remarkably comprehensive, despite the relatively small size of our research activity. We have frequently been asked to deliver seminars or provide reviews on various aspects of micro fabrication. These activities made us aware of the need for a comprehensive overview of the physics of microfabrication. We hope that this book will fill that need.




The Physics of Micro/Nano-Fabrication


Book Description

In this revised and expanded edition, the authors provide a comprehensive overview of the tools, technologies, and physical models needed to understand, build, and analyze microdevices. Students, specialists within the field, and researchers in related fields will appreciate their unified presentation and extensive references.




Three-Dimensional Microfabrication Using Two-Photon Polymerization


Book Description

Three-Dimensional Microfabrication Using Two-Photon Polymerization, Second Edition offers a comprehensive guide to TPP microfabrication and a unified description of TPP microfabrication across disciplines. It offers in-depth discussion and analysis of all aspects of TPP, including the necessary background, pros and cons of TPP microfabrication, material selection, equipment, processes and characterization. Current and future applications are covered, along with case studies that illustrate the book's concepts. This new edition includes updated chapters on metrology, synthesis and the characterization of photoinitiators used in TPP, negative- and positive-tone photoresists, and nonlinear optical characterization of polymers. This is an important resource that will be useful for scientists involved in microfabrication, generation of micro- and nano-patterns and micromachining. - Discusses the major types of nanomaterials used in the agriculture and forestry sectors, exploring how their properties make them effective for specific applications - Explores the design, fabrication, characterization and applications of nanomaterials for new Agri-products - Offers an overview of regulatory aspects regarding the use of nanomaterials for agriculture and forestry




Laser Precision Microfabrication


Book Description

Miniaturization and high precision are rapidly becoming a requirement for many industrial processes and products. As a result, there is greater interest in the use of laser microfabrication technology to achieve these goals. This book composed of 16 chapters covers all the topics of laser precision processing from fundamental aspects to industrial applications to both inorganic and biological materials. It reviews the sate of the art of research and technological development in the area of laser processing.




Transport in Laser Microfabrication


Book Description

Provides researchers and practitioners with the technical background to understand transport phenomena in laser microfabrication applications.




Introduction to Microfabrication


Book Description

Microfabrication is the key technology behind integrated circuits,microsensors, photonic crystals, ink jet printers, solar cells andflat panel displays. Microsystems can be complex, but the basicmicrostructures and processes of microfabrication are fairlysimple. Introduction to Microfabrication shows how the commonmicrofabrication concepts can be applied over and over again tocreate devices with a wide variety of structures andfunctions. Featuring: * A comprehensive presentation of basic fabrication processes * An emphasis on materials and microstructures, rather than devicephysics * In-depth discussion on process integration showing how processes,materials and devices interact * A wealth of examples of both conceptual and real devices Introduction to Microfabrication includes 250 homework problems forstudents to familiarise themselves with micro-scale materials,dimensions, measurements, costs and scaling trends. Both researchand manufacturing topics are covered, with an emphasis on silicon,which is the workhorse of microfabrication. This book will serve as an excellent first text for electricalengineers, chemists, physicists and materials scientists who wishto learn about microstructures and microfabrication techniques,whether in MEMS, microelectronics or emerging applications.




Fundamentals of Microfabrication and Nanotechnology, Three-Volume Set


Book Description

Now in its third edition, Fundamentals of Microfabrication and Nanotechnology continues to provide the most complete MEMS coverage available. Thoroughly revised and updated the new edition of this perennial bestseller has been expanded to three volumes, reflecting the substantial growth of this field. It includes a wealth of theoretical and practical information on nanotechnology and NEMS and offers background and comprehensive information on materials, processes, and manufacturing options. The first volume offers a rigorous theoretical treatment of micro- and nanosciences, and includes sections on solid-state physics, quantum mechanics, crystallography, and fluidics. The second volume presents a very large set of manufacturing techniques for micro- and nanofabrication and covers different forms of lithography, material removal processes, and additive technologies. The third volume focuses on manufacturing techniques and applications of Bio-MEMS and Bio-NEMS. Illustrated in color throughout, this seminal work is a cogent instructional text, providing classroom and self-learners with worked-out examples and end-of-chapter problems. The author characterizes and defines major research areas and illustrates them with examples pulled from the most recent literature and from his own work.




3D Laser Microfabrication


Book Description

A thorough introduction to 3D laser microfabrication technology, leading readers from the fundamentals and theory to its various potent applications, such as the generation of tiny objects or three-dimensional structures within the bulk of transparent materials. The book also presents new theoretical material on dielectric breakdown, allowing a better understanding of the differences between optical damage on surfaces and inside the bulk, as well as a look into the future. Chemists, physicists, materials scientists and engineers will find this a valuable source of interdisciplinary knowledge in the field of laser optics and nanotechnology.




Microsystem Technology in Chemistry and Life Sciences


Book Description

"WHAT DOES NOT NEED TO BE BIG, WILL BE SMALL", a word by an engineer at a recent conference on chips technology. This sentence is particularly true for chemistry. Microfabrication technology emerged from microelectronics into areas like mechanics and now chemistry and biology. The engineering of micron and submicron sized features on the surface of silicon, glass and polymers opens a whole new world. Micromotors smaller than human hair have been fabricated and they work fine. It is the declared goal of the authors to bring these different worlds together in this volume. Authors have been carefully chosen to guarantee for the quality of the contents. An engineer, a chemist or a biologist will find new impulses from the various chapters in this book.




Micromanufacturing Engineering and Technology


Book Description

Micromanufacturing Engineering and Technology presents applicable knowledge of technology, equipment and applications, and the core economic issues of micromanufacturing for anyone with a basic understanding of manufacturing, material, or product engineering. It explains micro-engineering issues (design, systems, materials, market and industrial development), technologies, facilities, organization, competitiveness, and innovation with an analysis of future potential. The machining, forming, and joining of miniature / micro-products are all covered in depth, covering: grinding/milling, laser applications, and photo chemical etching; embossing (hot & UV), injection molding and forming (bulk, sheet, hydro, laser); mechanical assembly, laser joining, soldering, and packaging. - Presents case studies, material and design considerations, working principles, process configurations, and information on tools, equipment, parameters and control - Explains the many facets of recently emerging additive / hybrid technologies and systems, incl: photo-electric-forming, liga, surface treatment, and thin film fabrication - Outlines system engineering issues pertaining to handling, metrology, testing, integration and software - Explains widely used micro parts in bio / medical industry, information technology and automotive engineering - Covers technologies in high demand, such as: micro-mechanical-cutting, lasermachining, micro-forming, micro-EDM, micro-joining, photo-chemical-etching, photo-electro-forming, and micro-packaging