The Physics Of The Deformation Of Densely Packed Granular Materials


Book Description

This book is of interest for those that are concerned professionally with granular materials: civil engineers, geologists and geophysicists, chemical engineers, pharmacists, food technologists, agriculturalists, biologists and astronomers.Granular materials play a role in nearly all human activities. For example, users of sand, from children in sandpits to sophisticated geotechnical engineers, know that it is a fascinating — and to some extent, unpredictable — material. In addition to sand, which itself may be of many compositions, there are various types of materials including gravel, fine-particle aggregates as employed in cosmetics, pharmaceuticals, dust, crushed rock and granules that occur in a domestic environment, such as breakfast cereals, sugar, salt and (instant or ground) coffee granules.The aim of the book is to present a theory that explains the physics behind the phenomena during the deformation of densely packed granular media. The physics that describes such features is rather subtle and is developed from the micro to macro level (the latter is the continuum mechanics level that is used in practical applications). It requires the analysis of anisotropy and the heterogeneity of the packing evaluated against the background of a frictional inter-particle interaction.




The Physics of the Deformation of Densely Packed Granular Materials


Book Description

"This book is of interest for those that are concerned professionally with granular materials: civil engineers, geologists and geophysicists, chemical engineers, pharmacists, food technologists, agriculturalists, biologists and astronomers. Granular materials play a role in nearly all human activities. For example, users of sand, from children in sandpits to sophisticated geotechnical engineers, know that it is a fascinating - and to some extent, unpredictable - material. In addition to sand, which itself may be of many compositions, there are various types of materials including gravel, fine-particle aggregates as employed in cosmetics, pharmaceuticals, dust, crushed rock and granules that occur in a domestic environment, such as breakfast cereals, sugar, salt and (instant or ground) coffee granules"--




Constructing the Edifice of Mechanics


Book Description

This book deals with theoretical mechanics. Newton published the "Philosophiæ Naturalis Principia Mathematica" in 1687. In it, he sets out the basic principles of physics that are required to understand the motion of the planets, their moons, and the comets in the solar system. It includes the gravitational (inverse square) law, the inertial principle, and the basic elements of mechanics. Since its publication, a large number of refinements and reformulations have been introduced, thereby adding enormous insight into the structure of mechanics, which is commonly known as “classical mechanics”. All these have in common that by taking a suitable limit, Newton's original principles re-appear. Thus, physicists and mathematicians who work on the subject always have a notion that if their theories do not return to Newton's foundations, then there is something wrong. Newton himself acknowledged that 'if I have seen further (than others), it is by standing on the shoulders of giants'. One of these giants was undoubtedly Galileo who died in the year Newton was born. So, Newton himself adhered to the 'classical limit'.




Theoretical Analyses, Computations, and Experiments of Multiscale Materials


Book Description

This book is devoted to the 60th birthday of the Prof. Francesco dell’Isola, who is known for his long-term contribution in the field of multiscale materials. It contains several contributions from researchers in the field, covering theoretical analyses, computational aspects and experiments.




The Physics of Complex Systems (New Advances and Perspectives)


Book Description

It is widely known that complex systems and complex materials comprise a major interdisciplinary scientific field that draws on mathematics, physics, chemistry, biology, and medicine as well as such social sciences as economics. The role of statistical physics in this new field has been expanding. Statistical physics has shown how phenomena and processes in different research areas that have long been assumed to be unrelated can have a common description. Through the application of statistical physics, methods developed for studying order phenomena in simple systems and processes have been generalized to more complex systems. The two conceptual pillars in this approach are scaling and universality. This volume focuses on recent advances and perspectives in the physics of complex systems and provides both an overview of the field and a more detailed examination of the new ideas and unsolved problems that are currently attracting the attention of researchers. This book should be a useful reference work for anyone interested in this area, whether beginning graduate student or advanced research professional. It provides up-to-date reviews on cutting-edge topics compiled by leading authorities and is designed to both broaden the reader’s competence within their own field and encourage the exploration of new problems in related fields.




Advances in Micromechanics of Granular Materials


Book Description

The 45 papers presented in this volume all share the common goal of constructing continuum models based on the micro behaviours of granular materials. Computer simulations continue to provide observations to aid modelling, while new experimental works begin to show promise for increased understanding in this area. Theoretical studies have extended into transitions between the rapid and quasi-static regimes and the fluid and solid mixture flows. Exciting new topics discussed in this volume include: concepts of a measure for randomness in quasi-static granular materials, which is analogous to the granular temperature in a rapid flow; scaling effects in granular media and their implications in both physical and computer simulations; instability; and boundary effects on heterogeneous behavior in simple flow configurations, which are posing new challenges for mathematical modelling. The volume will prove indispensable reading for researchers interested in the current developments in the fundamental aspects of mechanics of granular materials.




Coherent Structures in Complex Systems


Book Description

A rich variety of real-life physical problems which are still poorly understood are of a nonlinear nature. Examples include turbulence, granular flows, detonations and flame propagation, fracture dynamics, and a wealth of new biological and chemical phenomena which are being discovered. Particularly interesting among the manifestations of nonlinearity are coherent structures. This book contains reviews and contributions reporting on the state of the art regarding the role of coherent structures and patterns in nonlinear science.




Mechanics of Granular Materials: An Introduction


Book Description

This textbook compiles reports written by about 35 internationally recognized authorities, and covers a range of interests for geotechnical engineers. Topics include: fundamentals for mechanics of granular materials; continuum theory of granular materials; and discrete element approaches.




Mathematics and Mechanics of Granular Materials


Book Description

Granular or particulate materials arise in almost every aspect of our lives, including many familiar materials such as tea, coffee, sugar, sand, cement and powders. At some stage almost every industrial process involves a particulate material, and it is usually the cause of the disruption to the smooth running of the process. In the natural environment, understanding the behaviour of particulate materials is vital in many geophysical processes such as earthquakes, landslides and avalanches. This book is a collection of current research from some of the major contributors in the topic of modelling the behaviour of granular materials. Papers from every area of current activity are included, such as theoretical, numerical, engineering and computational approaches. This book illustrates the numerous diverse approaches to one of the outstanding problems of modern continuum mechanics.




Ceramic Microstructures


Book Description

This text deals with the effect of processing on the microstructure and properties of advanced structural and electroceramic materials. It fulfils the need for a well illustrated book explaining the relation between microstructure and properties in structural ceramics, featuring high quality micrographs and characterization techniques.