The Physics of Ultra-High-Density Magnetic Recording


Book Description

Application-oriented book on magnetic recording, focussing on the underlying physical mechanisms that play crucial roles in medium and transducer development for high areal density disk drives.




Ultra-High-Density Magnetic Recording


Book Description

Today magnetic recording is still the leading technology for mass data storage. Its dominant role is being reinforced by the success of cloud computing, which requires storing and managing huge amounts of data on a multitude of servers. Nonetheless, the hard-disk storage industry is presently at a crossroads as the current magnetic recording techno




High Density Data Storage


Book Description

The explosive increase in information and the miniaturization of electronic devices demand new recording technologies and materials that combine high density, fast response, long retention time and rewriting capability. As predicted, the current silicon-based computer circuits are reaching their physical limits. Further miniaturization of the electronic components and increase in data storage density are vital for the next generation of IT equipment such as ultra high-speed mobile computing, communication devices and sophisticated sensors. This original book presents a comprehensive introduction to the significant research achievements on high-density data storage from the aspects of recording mechanisms, materials and fabrication technologies, which are promising for overcoming the physical limits of current data storage systems. The book serves as an useful guide for the development of optimized materials, technologies and device structures for future information storage, and will lead readers to the fascinating world of information technology in the future.




Sputtering Materials for VLSI and Thin Film Devices


Book Description

An important resource for students, engineers and researchers working in the area of thin film deposition using physical vapor deposition (e.g. sputtering) for semiconductor, liquid crystal displays, high density recording media and photovoltaic device (e.g. thin film solar cell) manufacturing. This book also reviews microelectronics industry topics such as history of inventions and technology trends, recent developments in sputtering technologies, manufacturing steps that require sputtering of thin films, the properties of thin films and the role of sputtering target performance on overall productivity of various processes. Two unique chapters of this book deal with productivity and troubleshooting issues. The content of the book has been divided into two sections: (a) the first section (Chapter 1 to Chapter 3) has been prepared for the readers from a range of disciplines (e.g. electrical, chemical, chemistry, physics) trying to get an insight into use of sputtered films in various devices (e.g. semiconductor, display, photovoltaic, data storage), basic of sputtering and performance of sputtering target in relation to productivity, and (b) the second section (Chapter 4 to Chapter 8) has been prepared for readers who already have background knowledge of sputter deposition of thin films, materials science principles and interested in the details of sputtering target manufacturing methods, sputtering behavior and thin film properties specific to semiconductor, liquid crystal display, photovoltaic and magnetic data storage applications. In Chapters 5 to 8, a general structure has been used, i.e. a description of the applications of sputtered thin films, sputtering target manufacturing methods (including flow charts), sputtering behavior of targets (e.g. current - voltage relationship, deposition rate) and thin film properties (e.g. microstructure, stresses, electrical properties, in-film particles). While discussing these topics, attempts have been made to include examples from the actual commercial processes to highlight the increased complexity of the commercial processes with the growth of advanced technologies. In addition to personnel working in industry setting, university researchers with advanced knowledge of sputtering would also find discussion of such topics (e.g. attributes of target design, chamber design, target microstructure, sputter surface characteristics, various troubleshooting issues) useful. . - Unique coverage of sputtering target manufacturing methods in the light of semiconductor, displays, data storage and photovoltaic industry requirements - Practical information on technology trends, role of sputtering and major OEMs - Discussion on properties of a wide variety of thin films which include silicides, conductors, diffusion barriers, transparent conducting oxides, magnetic films etc. - Practical case-studies on target performance and troubleshooting - Essential technological information for students, engineers and scientists working in the semiconductor, display, data storage and photovoltaic industry




High Density Digital Recording


Book Description

This book deals with many aspects of high density digital recording. It begins with very basic concepts in magnetism and magneto-optics, then continues with the synthesis and physical properties of recording media, thin films and particulate media. More technological aspects of recording heads and their contact with the recording media are also discussed in subsequent chapters. The second part of the book is devoted to the magneto-optical properties of various recording media and to the engineering of magneto-optical recording.




Handbook of Nanophysics


Book Description

Covering the key theories, tools, and techniques of this dynamic field, Handbook of Nanophysics: Principles and Methods elucidates the general theoretical principles and measurements of nanoscale systems. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fund




Advanced Magnetic Nanostructures


Book Description

Advanced magnetic nanostructures is an emerging field in magnetism and nanotechnology, but the literature consists of a rich variety of original papers and parts of reviews and books whose scope is comparatively broad. This calls for a book with specific emphasis on state-of-the-art synthetic methods for fabricating, characterizing and theoretically modeling new magnetic nanostructures. This book is intended to provide a comprehensive overview of the present state of the field. Leading researchers world-wide have contributed a survey of their special ties to guide the reader through the exploding literature in nanomagnetic structures. The focus is on deliberately structured nanomagnets. It includes cluster assembled, self-organized and patterned thin films but excludes, for example, multilayered thin films. We target both industrial and academic researchers in magnetism and related areas, such as nanotechnology, materials science, and theoretical solid-state physics.




Developments in Data Storage


Book Description

A timely text on the recent developments in data storage, from a materials perspective Ever-increasing amounts of data storage on hard disk have been made possible largely due to the immense technological advances in the field of data storage materials. Developments in Data Storage: Materials Perspective covers the recent progress and developments in recording technologies, including the emerging non-volatile memory, which could potentially become storage technologies of the future. Featuring contributions from experts around the globe, this book provides engineers and graduate students in materials science and electrical engineering a solid foundation for grasping the subject. The book begins with the basics of magnetism and recording technology, setting the stage for the following chapters on existing methods and related research topics. These chapters focus on perpendicular recording media to underscore the current trend of hard disk media; read sensors, with descriptions of their fundamental principles and challenges; and write head, which addresses the advanced concepts for writing data in magnetic recording. Two chapters are devoted to the highly challenging area in hard disk drives of tribology, which deals with reliability, corrosion, and wear-resistance of the head and media. Next, the book provides an overview of the emerging technologies, such as heat-assisted magnetic recording and bit-patterned media recording. Non-volatile memory has emerged as a promising alternative storage option for certain device applications; two chapters are dedicated to non-volatile memory technologies such as the phase-change and the magnetic random access memories. With a strong focus on the fundamentals along with an overview of research topics, Developments in Data Storage is an ideal reference for graduate students or beginners in the field of magnetic recording. It also serves as an invaluable reference for future storage technologies including non-volatile memories.




Advances in Solid State Physics 47


Book Description

The 2007 Spring Meeting of the Arbeitskreis Festkörperphysik was held in Regensburg, Germany, March 2007, in conjunction with the Deutsche Physikalische Gesellschaft. It was one of the largest physics meetings in Europe. The present volume 47 of the Advances in Solid State Physics contains written versions of a large number of the invited talks and gives an overview of the present status of solid state physics where low-dimensional systems are dominating.




Ninth International Conference on Ferrites (ICF-9)


Book Description

This proceedings includes 147 papers covering the latest scientific and technological developments in ferrites and related materials in three broad subject categories: Basic Science, Processing and Applications, and Special Topics and New Horizons. There are two main categories for ferrites: hard ferrites (permanent magnets) and soft ferrites. Topics covered are energy conversion, magnetite biomineralization, microwave ferrites, magneto-optical properties and applications of ferrite films, bonded magnets, physics of electronic superstructures in magnetite, physics of perovskites, nanostructural ferrites, and multilayer chip inductors.