PCB Design Guide to Via and Trace Currents and Temperatures


Book Description

A very important part of printed circuit board (PCB) design involves sizing traces and vias to carry the required current. This exciting new book will explore how hot traces and vias should be and what board, circuit, design, and environmental parameters are the most important. PCB materials (copper and dielectrics) and the role they play in the heating and cooling of traces are covered. The IPC curves found in IPC 2152, the equations that fit those curves and computer simulations that fit those curves and equations are detailed. Sensitivity analyses that show what happens when environments are varied, including adjacent traces and planes, changing trace lengths, and thermal gradients are presented. Via temperatures and what determines them are explored, along with fusing issues and what happens when traces are overloaded. Voltage drops across traces and vias, the thermal effects going around right-angle corners, and frequency effects are covered. Readers learn how to measure the thermal conductivity of dielectrics and how to measure the resistivity of copper traces and why many prior attempts to do so have been doomed to failure. Industrial CT Scanning, and whether or not they might replace microsections for measuring trace parameters are also considered.







RF Circuit Design


Book Description

It's Back! New chapters, examples, and insights; all infused with the timeless concepts and theories that have helped RF engineers for the past 25 years!RF circuit design is now more important than ever as we find ourselves in an increasingly wireless world. Radio is the backbone of today's wireless industry with protocols such as Bluetooth, Wi-Fi, WiMax, and ZigBee. Most, if not all, mobile devices have an RF component and this book tells the reader how to design and integrate that component in a very practical fashion. This book has been updated to include today's integrated circuit (IC) and system-level design issues as well as keeping its classic "wire lead" material. Design Concepts and Tools Include•The Basics: Wires, Resistors, Capacitors, Inductors•Resonant Circuits: Resonance, Insertion Loss •Filter Design: High-pass, Bandpass, Band-rejection•Impedance Matching: The L Network, Smith Charts, Software Design Tools•Transistors: Materials, Y Parameters, S Parameters•Small Signal RF Amplifier: Transistor Biasing, Y Parameters, S Parameters•RF Power Amplifiers: Automatic Shutdown Circuitry , Broadband Transformers, Practical Winding Hints•RF Front-End: Architectures, Software-Defined Radios, ADC's Effects•RF Design Tools: Languages, Flow, ModelingCheck out this book's companion Web site at: http://www.elsevierdirect.com/companion.jsp?ISBN=9780750685184 for full-color Smith Charts and extra content! - Completely updated but still contains its classic timeless information - Two NEW chapters on RF Front-End Design and RF Design Tools - Not overly math intensive, perfect for the working RF and digital professional that need to build analog-RF-Wireless circuits




Foundations for Microstrip Circuit Design


Book Description

Building on the success of the previous three editions, Foundations for Microstrip Circuit Design offers extensive new, updated and revised material based upon the latest research. Strongly design-oriented, this fourth edition provides the reader with a fundamental understanding of this fast expanding field making it a definitive source for professional engineers and researchers and an indispensable reference for senior students in electronic engineering. Topics new to this edition: microwave substrates, multilayer transmission line structures, modern EM tools and techniques, microstrip and planar transmision line design, transmission line theory, substrates for planar transmission lines, Vias, wirebonds, 3D integrated interposer structures, computer-aided design, microstrip and power-dependent effects, circuit models, microwave network analysis, microstrip passive elements, and slotline design fundamentals.




High Speed Digital Design


Book Description

High Speed Digital Design discusses the major factors to consider in designing a high speed digital system and how design concepts affect the functionality of the system as a whole. It will help you understand why signals act so differently on a high speed digital system, identify the various problems that may occur in the design, and research solutions to minimize their impact and address their root causes. The authors offer a strong foundation that will help you get high speed digital system designs right the first time. Taking a systems design approach, High Speed Digital Design offers a progression from fundamental to advanced concepts, starting with transmission line theory, covering core concepts as well as recent developments. It then covers the challenges of signal and power integrity, offers guidelines for channel modeling, and optimizing link circuits. Tying together concepts presented throughout the book, the authors present Intel processors and chipsets as real-world design examples. - Provides knowledge and guidance in the design of high speed digital circuits - Explores the latest developments in system design - Covers everything that encompasses a successful printed circuit board (PCB) product - Offers insight from Intel insiders about real-world high speed digital design




Microwave Circuit Design Using Linear and Nonlinear Techniques


Book Description

The ultimate handbook on microwave circuit design with CAD. Full of tips and insights from seasoned industry veterans, Microwave Circuit Design offers practical, proven advice on improving the design quality of microwave passive and active circuits-while cutting costs and time. Covering all levels of microwave circuit design from the elementary to the very advanced, the book systematically presents computer-aided methods for linear and nonlinear designs used in the design and manufacture of microwave amplifiers, oscillators, and mixers. Using the newest CAD tools, the book shows how to design transistor and diode circuits, and also details CAD's usefulness in microwave integrated circuit (MIC) and monolithic microwave integrated circuit (MMIC) technology. Applications of nonlinear SPICE programs, now available for microwave CAD, are described. State-of-the-art coverage includes microwave transistors (HEMTs, MODFETs, MESFETs, HBTs, and more), high-power amplifier design, oscillator design including feedback topologies, phase noise and examples, and more. The techniques presented are illustrated with several MMIC designs, including a wideband amplifier, a low-noise amplifier, and an MMIC mixer. This unique, one-stop handbook also features a major case study of an actual anticollision radar transceiver, which is compared in detail against CAD predictions; examples of actual circuit designs with photographs of completed circuits; and tables of design formulae.




Practical Radio Frequency Test and Measurement


Book Description

RF circuits; transmitters; receivers; antennas; troubleshooting.




RFID Handbook


Book Description

This is the third revised edition of the established and trusted RFID Handbook; the most comprehensive introduction to radio frequency identification (RFID) available. This essential new edition contains information on electronic product code (EPC) and the EPC global network, and explains near-field communication (NFC) in depth. It includes revisions on chapters devoted to the physical principles of RFID systems and microprocessors, and supplies up-to-date details on relevant standards and regulations. Taking into account critical modern concerns, this handbook provides the latest information on: the use of RFID in ticketing and electronic passports; the security of RFID systems, explaining attacks on RFID systems and other security matters, such as transponder emulation and cloning, defence using cryptographic methods, and electronic article surveillance; frequency ranges and radio licensing regulations. The text explores schematic circuits of simple transponders and readers, and includes new material on active and passive transponders, ISO/IEC 18000 family, ISO/IEC 15691 and 15692. It also describes the technical limits of RFID systems. A unique resource offering a complete overview of the large and varied world of RFID, Klaus Finkenzeller’s volume is useful for end-users of the technology as well as practitioners in auto ID and IT designers of RFID products. Computer and electronics engineers in security system development, microchip designers, and materials handling specialists benefit from this book, as do automation, industrial and transport engineers. Clear and thorough explanations also make this an excellent introduction to the topic for graduate level students in electronics and industrial engineering design. Klaus Finkenzeller was awarded the Fraunhofer-Smart Card Prize 2008 for the second edition of this publication, which was celebrated for being an outstanding contribution to the smart card field.




Microwave Devices, Circuits and Subsystems for Communications Engineering


Book Description

Microwave Devices, Circuits and Subsystems for Communications Engineering provides a detailed treatment of the common microwave elements found in modern microwave communications systems. The treatment is thorough without being unnecessarily mathematical. The emphasis is on acquiring a conceptual understanding of the techniques and technologies discussed and the practical design criteria required to apply these in real engineering situations. Key topics addressed include: Microwave diode and transistor equivalent circuits Microwave transmission line technologies and microstrip design Network methods and s-parameter measurements Smith chart and related design techniques Broadband and low-noise amplifier design Mixer theory and design Microwave filter design Oscillators, synthesisers and phase locked loops Each chapter is written by specialists in their field and the whole is edited by experience authors whose expertise spans the fields of communications systems engineering and microwave circuit design. Microwave Devices, Circuits and Subsystems for Communications Engineering is suitable for senior electrical, electronic or telecommunications engineering undergraduate students, first year postgraduate students and experienced engineers seeking a conversion or refresher text. Includes a companion website featuring: Solutions to selected problems Electronic versions of the figures Sample chapter