The Problem with Math Is English


Book Description

Teaching K-12 math becomes an easier task when everyone understands the language, symbolism, and representation of math concepts Published in partnership with SEDL, The Problem with Math Is English illustrates how students often understand fundamental mathematical concepts at a superficial level. Written to inspire ?aha? moments, this book enables teachers to help students identify and comprehend the nuances and true meaning of math concepts by exploring them through the lenses of language and symbolism, delving into such essential topics as multiplication, division, fractions, place value, proportional reasoning, graphs, slope, order of operations, and the distributive property. Offers a new way to approach teaching math content in a way that will improve how all students, and especially English language learners, understand math Emphasizes major attributes of conceptual understanding in mathematics, including simple yet deep definitions of key terms, connections among key topics, and insightful interpretation This important new book fills a gap in math education by illustrating how a deeper knowledge of math concepts can be developed in all students through a focus on language and symbolism.




The Problem with Math Is English


Book Description

Teaching K-12 math becomes an easier task when everyone understands the language, symbolism, and representation of math concepts Published in partnership with SEDL, The Problem with Math Is English illustrates how students often understand fundamental mathematical concepts at a superficial level. Written to inspire ?aha? moments, this book enables teachers to help students identify and comprehend the nuances and true meaning of math concepts by exploring them through the lenses of language and symbolism, delving into such essential topics as multiplication, division, fractions, place value, proportional reasoning, graphs, slope, order of operations, and the distributive property. Offers a new way to approach teaching math content in a way that will improve how all students, and especially English language learners, understand math Emphasizes major attributes of conceptual understanding in mathematics, including simple yet deep definitions of key terms, connections among key topics, and insightful interpretation This important new book fills a gap in math education by illustrating how a deeper knowledge of math concepts can be developed in all students through a focus on language and symbolism.




Problem-Solving Strategies


Book Description

A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market.







Teaching Math to Multilingual Students, Grades K-8


Book Description

Using strengths-based approaches to support development in mathematics It’s time to re-imagine what’s possible and celebrate the brilliance multilingual learners bring to today’s classrooms. Innovative teaching strategies can position these learners as leaders in mathematics. Yet, as the number of multilingual learners in North American schools grows, many teachers have not had opportunities to gain the competencies required to teach these learners effectively, especially in disciplines such as mathematics. Multilingual learners—historically called English Language Learners—are expected to interpret the meaning of problems, analyze, make conjectures, evaluate their progress, and discuss and understand their own approaches and the approaches of their peers in mathematics classrooms. Thus, language plays a vital role in mathematics learning, and demonstrating these competencies in a second (or third) language is a challenging endeavor. Based on best practices and the authors’ years of research, this guide offers practical approaches that equip grades K-8 teachers to draw on the strengths of multilingual learners, partner with their families, and position these learners for success. Readers will find: • A focus on multilingual students as leaders • A strength-based approach that draws on students’ life experiences and cultural backgrounds • An emphasis on maintaining high expectations for learners’ capacity for mastering rigorous content • Strategies for representing concepts in different formats • Stop and Think questions throughout and reflection questions at the end of each chapter • Try It! Implementation activities, student work examples, and classroom transcripts With case studies and activities that provide a solid foundation for teachers’ growth and exploration, this groundbreaking book will help teachers and teacher educators engage in meaningful, humanized mathematics instruction.




Mathematical Thinking and Communication


Book Description

Language is deeply involved in learning mathematics as students both communicate and think about mathematical ideas. Because of this, teachers of English learners have particular challenges to overcome. Mathematical Thinking and Communication addresses perhaps the most significant challenge: providing access to mathematics for these students. For all students-and English learners in particular-access means finding effective, authentic ways to make language clear and thinking visible so they can reason more, speak more, and write more in mathematics. Based on extensive research and collaboration with teachers, coaches, and schools, Mark Driscoll, Johannah Nikula, and Jill Neumayer DePiper outline four principles for designing instruction that creates this kind of access: challenging tasks, multimodal representations, development of mathematical communication, and repeated structured practice. Starting from the perspective that English learners are capable of mathematical thinking (even as they are learning to express their ideas verbally), the authors highlight techniques for using gestures, drawings, models, manipulatives, and technology as tools for reasoning and communication. By embedding these visual representations into instruction-and encouraging their regular use-teachers support engagement in problem solving, facilitate mathematical dialogue, and notice evidence of students' thinking that propels them to create more engaging and equitable instruction. Enhanced by an extensive online collection of companion professional development resources, this book highlights classroom-ready strategies and routines for fostering mathematics success in all students and helping them recognize their potential.




A Problem Seminar


Book Description

There was once a bumper sticker that read, "Remember the good old days when air was clean and sex was dirty?" Indeed, some of us are old enough to remember not only those good old days, but even the days when Math was/un(!), not the ponderous THEOREM, PROOF, THEOREM, PROOF, . . . , but the whimsical, "I've got a good prob lem. " Why did the mood change? What misguided educational philoso phy transformed graduate mathematics from a passionate activity to a form of passive scholarship? In less sentimental terms, why have the graduate schools dropped the Problem Seminar? We therefore offer "A Problem Seminar" to those students who haven't enjoyed the fun and games of problem solving. CONTENTS Preface v Format I Problems 3 Estimation Theory 11 Generating Functions 17 Limits of Integrals 19 Expectations 21 Prime Factors 23 Category Arguments 25 Convexity 27 Hints 29 Solutions 41 FORMAT This book has three parts: first, the list of problems, briefly punctuated by some descriptive pages; second, a list of hints, which are merely meant as words to the (very) wise; and third, the (almost) complete solutions. Thus, the problems can be viewed on any of three levels: as somewhat difficult challenges (without the hints), as more routine problems (with the hints), or as a textbook on "how to solve it" (when the solutions are read). Of course it is our hope that the book can be enjoyed on any of these three levels.




The Language of Mathematics


Book Description

A new and unique way of understanding the translation of concepts and natural language into mathematical expressions Transforming a body of text into corresponding mathematical expressions and models is traditionally viewed and taught as a mathematical problem; it is also a task that most find difficult. The Language of Mathematics: Utilizing Math in Practice reveals a new way to view this process—not as a mathematical problem, but as a translation, or language, problem. By presenting the language of mathematics explicitly and systematically, this book helps readers to learn mathematics¿and improve their ability to apply mathematics more efficiently and effectively to practical problems in their own work. Using parts of speech to identify variables and functions in a mathematical model is a new approach, as is the insight that examining aspects of grammar is highly useful when formulating a corresponding mathematical model. This book identifies the basic elements of the language of mathematics, such as values, variables, and functions, while presenting the grammatical rules for combining them into expressions and other structures. The author describes and defines different notational forms for expressions, and also identifies the relationships between parts of speech and other grammatical elements in English and components of expressions in the language of mathematics. Extensive examples are used throughout that cover a wide range of real-world problems and feature diagrams and tables to facilitate understanding. The Language of Mathematics is a thought-provoking book of interest for readers who would like to learn more about the linguistic nature and aspects of mathematical notation. The book also serves as a valuable supplement for engineers, technicians, managers, and consultants who would like to improve their ability to apply mathematics effectively, systematically, and efficiently to practical problems.




Berkeley Problems in Mathematics


Book Description

This book collects approximately nine hundred problems that have appeared on the preliminary exams in Berkeley over the last twenty years. It is an invaluable source of problems and solutions. Readers who work through this book will develop problem solving skills in such areas as real analysis, multivariable calculus, differential equations, metric spaces, complex analysis, algebra, and linear algebra.




Advanced Problems in Mathematics


Book Description

This new and expanded edition is intended to help candidates prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Paper). STEP is an examination used by Cambridge Colleges for conditional offers in mathematics. They are also used by some other UK universities and many mathematics departments recommend that their applicants practice on the past papers even if they do not take the examination. Advanced Problems in Mathematics bridges the gap between school and university mathematics, and prepares students for an undergraduate mathematics course. The questions analysed in this book are all based on past STEP questions and each question is followed by a comment and a full solution. The comments direct the reader's attention to key points and put the question in its true mathematical context. The solutions point students to the methodology required to address advanced mathematical problems critically and independently. This book is a must read for any student wishing to apply to scientific subjects at university level and for anyone interested in advanced mathematics.