High-temperature Property Data


Book Description

This volume organizes information by alloy so that pertinent data can be found easily. Physical and mechanical properties from room temperature to temperatures in excess of 100 C are shown graphically or in tabular form. All data is thoroughly referenced. Now high-temperature property data can be found in one complete reference! Over 200 alloys are organized by AISI number into 11 major sections: Irons, Carbon Steels, Alloy Steels, ASTM Steels, Low Alloy Constructional Steels, Ultra High Strength Steels, Tool Steels, Maraging Steels, Wrought Stainless Steels, Heat Resistant Casting Alloys, and Wrought Iron-Nickel Alloys and Iron-Nickel Superalloys. Each alloy record lists the designation, specifications, UNS number composition product forms and a comment on the high-temperature properties and applications. Data is then given for physical properties such as density, specific heat, thermal conductivity, thermal expansion, electrical conductivity. Poisons ratio, moduli of elasticity and rigidity, etc. Mechanical properties follow, and include tensile properties, shearing and bearing properties, impact properties, creep, stress rupture and stress relaxation, and fatigue properties.The last part of the alloy record gives other effects of temperature, such as hot hardness, corrosion, and growth.




History of Strength of Materials


Book Description

Strength of materials is that branch of engineering concerned with the deformation and disruption of solids when forces other than changes in position or equilibrium are acting upon them. The development of our understanding of the strength of materials has enabled engineers to establish the forces which can safely be imposed on structure or components, or to choose materials appropriate to the necessary dimensions of structures and components which have to withstand given loads without suffering effects deleterious to their proper functioning. This excellent historical survey of the strength of materials with many references to the theories of elasticity and structures is based on an extensive series of lectures delivered by the author at Stanford University, Palo Alto, California. Timoshenko explores the early roots of the discipline from the great monuments and pyramids of ancient Egypt through the temples, roads, and fortifications of ancient Greece and Rome. The author fixes the formal beginning of the modern science of the strength of materials with the publications of Galileo's book, "Two Sciences," and traces the rise and development as well as industrial and commercial applications of the fledgling science from the seventeenth century through the twentieth century. Timoshenko fleshes out the bare bones of mathematical theory with lucid demonstrations of important equations and brief biographies of highly influential mathematicians, including: Euler, Lagrange, Navier, Thomas Young, Saint-Venant, Franz Neumann, Maxwell, Kelvin, Rayleigh, Klein, Prandtl, and many others. These theories, equations, and biographies are further enhanced by clear discussions of the development of engineering and engineering education in Italy, France, Germany, England, and elsewhere. 245 figures.







Tribology of Metal Cutting


Book Description

Tribology of Metal Cutting deals with the emerging field of studies known as Metal Cutting Tribology. Tribology is defined as the science and technology of interactive surfaces moving relative each other. It concentrates on contact physics and mechanics of moving interfaces that generally involve energy dissipation. This book summarizes the available information on metal cutting tribology with a critical review of work done in the past. The book covers the complete system of metal cutting testing. In particular, it presents, explains and exemplifies a breakthrough concept of the physical resource of the cutting tool. It also describes the cutting system physical efficiency and its practical assessment via analysis of the energy partition in the cutting system. Specialists in the field of metal cutting will find information on how to apply the major principles of metal cutting tribology, or, in other words, how to make the metal cutting tribology to be useful at various levels of applications. The book discusses other novel concepts and principles in the tribology of metal cutting such as the energy partition in the cutting system; versatile metrics of cutting tool wear; optimal cutting temperature and its use in the optimization of the cutting process; the physical concept of cutting tool resource; and embrittlement action. This book is intended for a broad range of readers such as metal cutting tool, cutting insert, and process designers; manufacturing engineers involved in continuous process improvement; research workers who are active or intend to become active in the field; and senior undergraduate and graduate students of manufacturing. · Introduces the cutting system physical efficiency and its practical assessment via analysis of the energy partition in the cutting system.· Presents, explains and exemplifies a breakthrough concept of the physical resource of the cutting tool.· Covers the complete system of metal cutting testing.




Properties of Aluminum Alloys


Book Description

A compilation of data collected and maintained for many years as the property of a large aluminum company, which decided in 1997 to make it available to other engineers and materials specialists. In tabular form, presents data on the tensile and creep properties of eight species of wrought alloys and five species of cast alloys in the various shapes used in applications. Then looks at the fatigue data for several alloys under a range of conditions and loads. The data represent the typical or average findings, and though some were developed years ago, the collection is the largest and most detailed available. There is no index.




ASM Ready Reference


Book Description

A quick and easy to use source for qualified thermal properties of metals and alloys. The data tables are arranged by material hierarchy, with summary tables sorted by property value. Values are given for a range of high and low temperatures. Short technical discussions at the beginning of each chapter are designed to refresh the reader's understanding of the properties and units covered in that section




ASM Specialty Handbook


Book Description

Materials covered include carbon, alloy and stainless steels; alloy cast irons; high-alloy cast steels; superalloys; titanium and titanium alloys; refractory metals and alloys; nickel-chromium and nickel-thoria alloys; structural intermetallics; structural ceramics, cermets, and cemented carbides; and carbon-composites.




High Temperature Deformation and Fracture of Materials


Book Description

The energy, petrochemical, aerospace and other industries all require materials able to withstand high temperatures. High temperature strength is defined as the resistance of a material to high temperature deformation and fracture. This important book provides a valuable reference to the main theories of high temperature deformation and fracture and the ways they can be used to predict failure and service life. - Analyses creep behaviour of materials, the evolution of dislocation substructures during creep, dislocation motion at elevated temperatures and importantly, recovery-creep theories of pure metals - Examines high temperature fracture, including nucleation of creep cavity, diffusional growth and constrained growth of creep cavities - A valuable reference to the main theories of high temperature deformation and fracture and the ways they can be used to predict failure and service life




Fundamentals of Creep in Metals and Alloys


Book Description

* Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials * Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures * Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussionUnderstanding the strength of materials at a range of temperatures is critically important to a huge number of researchers and practitioners from a wide range of fields and industry sectors including metallurgists, industrial designers, aerospace R&D personnel, and structural engineers. The most up-to date and comprehensive book in the field, Fundamentals of Creep in Metals and Alloys discusses the fundamentals of time-dependent plasticity or creep plasticity in metals, alloys and metallic compounds. This is the first book of its kind that provides broad coverage of a range of materials not just a sub-group such as metallic compounds, superalloys or crystals. As such it presents the most balanced view of creep for all materials scientists. The theory of all of these phenomena are extensively reviewed and analysed in view of an extensive bibliography that includes the most recent publications in the field. All sections of the book have undergone extensive peer review and therefore the reader can be sure they have access to the most up-to-date research, fully interrogated, from the world's leading investigators.· Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials· Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures· Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion