Research in Progress, FY 1992


Book Description




Blue Carbon


Book Description

This report explores the potential for mitigating the impacts of climate change by improved management and protection of marine ecosystems and especially the vegetated coastal habitat, or blue carbon sinks. The objective of this report is to highlight the critical role of the oceans and ocean ecosystems in maintaining our climate and in assisting policy makers to mainstream an oceans agenda into national and international climate change initiatives. While emissions' reductions are currently at the centre of the climate change discussions, the critical role of the oceans and ocean ecosystems has been vastly overlooked.




Ocean Circulation and Climate


Book Description

The book represents all the knowledge we currently have on ocean circulation. It presents an up-to-date summary of the state of the science relating to the role of the oceans in the physical climate system. The book is structured to guide the reader through the wide range of world ocean circulation experiment (WOCE) science in a consistent way. Cross-references between contributors have been added, and the book has a comprehensive index and unified reference list. The book is simple to read, at the undergraduate level. It was written by the best scientists in the world who have collaborated to carry out years of experiments to better understand ocean circulation. - Presents in situ and remote observations with worldwide coverage - Provides theoretical understanding of processes within the ocean and at its boundaries to other Earth System components - Allows for simulating ocean and climate processes in the past, present and future using a hierarchy of physical-biogeochemical models




Chemical Reference Materials


Book Description

The accuracy of chemical oceanographic measurements depends on calibration against reference materials to ensure comparability over time and among laboratories. Several key parameters lack reference materials for measurements in seawater, particles in the water column, and sediments. Without reference materials it is difficult to produce the reliable data sets or long-term baseline studies that are essential to verify global change and oceanic stability. Chemical Reference Materials : Setting the Standards for Ocean Science identifies the most urgently required chemical reference materials based on key themes for oceanographic research and provides suggestions as to how they can be developed within realistic cost constraints. Chemical analyses of seawater are uniquely difficult given the poorly known speciation and the low concentration of many of the analytes of interest. Analyses of suspended and sedimentary marine particulate materials present their own distinct challenges, primarily due to potential interference by predominant mineral phases of different types. Of all the analytical methods applied to marine waters and particles, at present only a small fraction can be systematically evaluated via comparison to reference materials that represent the appropriate natural concentrations and matrices. Specifically, the committee was charged with the following tasks: - compile from available sources a list of important oceanographic research questions that may benefit from chemical reference standards; - create a comprehensive list of reference materials currently available for oceanographic studies; - identify and prioritize the reference materials needed to study the identified research questions; - determine for each priority analyte whether reference materials and/or analytic methods should be standardized; and - identify the most appropriate approaches for the development and future production of reference materials for ocean sciences.




Ocean Acidification


Book Description

The ocean has absorbed a significant portion of all human-made carbon dioxide emissions. This benefits human society by moderating the rate of climate change, but also causes unprecedented changes to ocean chemistry. Carbon dioxide taken up by the ocean decreases the pH of the water and leads to a suite of chemical changes collectively known as ocean acidification. The long term consequences of ocean acidification are not known, but are expected to result in changes to many ecosystems and the services they provide to society. Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean reviews the current state of knowledge, explores gaps in understanding, and identifies several key findings. Like climate change, ocean acidification is a growing global problem that will intensify with continued CO2 emissions and has the potential to change marine ecosystems and affect benefits to society. The federal government has taken positive initial steps by developing a national ocean acidification program, but more information is needed to fully understand and address the threat that ocean acidification may pose to marine ecosystems and the services they provide. In addition, a global observation network of chemical and biological sensors is needed to monitor changes in ocean conditions attributable to acidification.




CO2 in Seawater: Equilibrium, Kinetics, Isotopes


Book Description

Carbon dioxide is the most important greenhouse gas after water vapor in the atmosphere of the earth. More than 98% of the carbon of the atmosphere-ocean system is stored in the oceans as dissolved inorganic carbon. The key for understanding critical processes of the marine carbon cycle is a sound knowledge of the seawater carbonate chemistry, including equilibrium and nonequilibrium properties as well as stable isotope fractionation.Presenting the first coherent text describing equilibrium and nonequilibrium properties and stable isotope fractionation among the elements of the carbonate system. This volume presents an overview and a synthesis of these subjects which should be useful for graduate students and researchers in various fields such as biogeochemistry, chemical oceanography, paleoceanography, marine biology, marine chemistry, marine geology, and others.The volume includes an introduction to the equilibrium properties of the carbonate system in which basic concepts such as equilibrium constants, alkalinity, pH scales, and buffering are discussed. It also deals with the nonequilibrium properties of the seawater carbonate chemistry. Whereas principle of chemical kinetics are recapitulated, reaction rates and relaxation times of the carbonate system are considered in details. The book also provides a general introduction to stable isotope fractionation and describes the partitioning of carbon, oxygen, and boron isotopes between the species of the carbonate system. The appendix contains formulas for the equilibrium constants of the carbonate system, mathematical expressions to calculate carbonate system parameters, answers to exercises and more.