The Rapid Evaluation of Potential Fields in Particle Systems


Book Description

The evaluation of Coulombic or gravitational interactions in large ensembles of particles is an integral part of the numerical simulation of a large number of physical processes. Examples include celestial mechanics, plasma physics, the vortex method in fluid dynamics, molecular dynamics, molecular dynamics, and the solution of the Laplace equation via potential theory. A numerical model follows the trajectories of a number of particles moving in accordance with Newton's second law of motion in a field generated by the whole ensemble. In many situations, in order to be of physical interest, the simulation has to involve thousands of particles (or more), and the fields have to be evaluated for a large number of configurations. Unfortunately, an amount of work of the order O N-sg has traditionally been required to evaluate all pairwise interactions in a system of N particles, unless some approximation or truncation method is used. Large scale simulations have been extremely expensive in some cases, and prohibitive in others. An algorithm is presented for the rapid evaluation of the potential and force fields in large scale systems of particles. To evaluate all pairwise Coulombic interactions of N particles to within round off error, the algorithm requires an amount of work proportional to N, and this estimate does not depend on the statistics of the distribution. Both two and three dimensional versions of the algorithm have been constructed. Applications to several problems in physics, chemistry, biology, and numerical complex analysis are discussed.




Molecular Modeling and Simulation


Book Description

Very broad overview of the field intended for an interdisciplinary audience; Lively discussion of current challenges written in a colloquial style; Author is a rising star in this discipline; Suitably accessible for beginners and suitably rigorous for experts; Features extensive four-color illustrations; Appendices featuring homework assignments and reading lists complement the material in the main text




Boundary Elements: Implementation and Analysis of Advanced Algorithms


Book Description

Englischer Text: The volume contains 21 contributions to the 12th GAMM-Seminar (Kiel, January 1996), which was devoted to advanced algorithms in the field of boundary element methods. The topics were e. g. cubature techniques, multiscale methods, hp-discretisation, error estimation, domain decomposition, and programm design. Deutscher Text: Der Band enthält die 21 Beiträge zum 12. GAMM-Seminar (Kiel, Jaunuar 1996), welches sich mit fortgeschrittenen Algorithmen auf dem Gebiet der Randwertprobleme befaßte.




Fast Direct Solvers for Elliptic PDEs


Book Description

Fast solvers for elliptic PDEs form a pillar of scientific computing. They enable detailed and accurate simulations of electromagnetic fields, fluid flows, biochemical processes, and much more. This textbook provides an introduction to fast solvers from the point of view of integral equation formulations, which lead to unparalleled accuracy and speed in many applications. The focus is on fast algorithms for handling dense matrices that arise in the discretization of integral operators, such as the fast multipole method and fast direct solvers. While the emphasis is on techniques for dense matrices, the text also describes how similar techniques give rise to linear complexity algorithms for computing the inverse or the LU factorization of a sparse matrix resulting from the direct discretization of an elliptic PDE. This is the first textbook to detail the active field of fast direct solvers, introducing readers to modern linear algebraic techniques for accelerating computations, such as randomized algorithms, interpolative decompositions, and data-sparse hierarchical matrix representations. Written with an emphasis on mathematical intuition rather than theoretical details, it is richly illustrated and provides pseudocode for all key techniques. Fast Direct Solvers for Elliptic PDEs is appropriate for graduate students in applied mathematics and scientific computing, engineers and scientists looking for an accessible introduction to integral equation methods and fast solvers, and researchers in computational mathematics who want to quickly catch up on recent advances in randomized algorithms and techniques for working with data-sparse matrices.




Dislocations, Mesoscale Simulations and Plastic Flow


Book Description

In the past twenty years, new experimental approaches, improved models and progress in simulation techniques brought new insights into long-standing issues concerning dislocation-based plasticity in crystalline materials. During this period, three-dimensional dislocation dynamics simulations appeared and reached maturity. Their objectives are to unravel the relation between individual and collective dislocation processes at the mesoscale, to establish connections with atom-scale studies of dislocation core properties and to bridge, in combination with modelling, the gap between defect properties and phenomenological continuum models for plastic flow. Dislocation dynamics simulations are becoming accessible to a wide range of users. This book presents to students and researchers in materials science and mechanical engineering a comprehensive coverage of the physical body of knowledge on which they are based. It includes classical studies, which are too often ignored, recent experimental and theoretical advances, as well as a discussion of selected applications on various topics.







Acta Numerica 1994: Volume 3


Book Description

Acta Numerica is an annual volume presenting survey papers in numerical analysis accessible to graduate students and researchers. Highlights of the 1994 issue are articles on domain decomposition, mesh adaption, pseudospectral methods and neural networks.




FY .. Annual ILIR Report


Book Description




Princeton Companion to Applied Mathematics


Book Description

The must-have compendium on applied mathematics This is the most authoritative and accessible single-volume reference book on applied mathematics. Featuring numerous entries by leading experts and organized thematically, it introduces readers to applied mathematics and its uses; explains key concepts; describes important equations, laws, and functions; looks at exciting areas of research; covers modeling and simulation; explores areas of application; and more. Modeled on the popular Princeton Companion to Mathematics, this volume is an indispensable resource for undergraduate and graduate students, researchers, and practitioners in other disciplines seeking a user-friendly reference book on applied mathematics. Features nearly 200 entries organized thematically and written by an international team of distinguished contributors Presents the major ideas and branches of applied mathematics in a clear and accessible way Explains important mathematical concepts, methods, equations, and applications Introduces the language of applied mathematics and the goals of applied mathematical research Gives a wide range of examples of mathematical modeling Covers continuum mechanics, dynamical systems, numerical analysis, discrete and combinatorial mathematics, mathematical physics, and much more Explores the connections between applied mathematics and other disciplines Includes suggestions for further reading, cross-references, and a comprehensive index




High Performance Computing - HiPC 2004


Book Description

This book constitutes the refereed proceedings of the 11th International Conference on High-Performance Computing, HiPC 2004, held in Bangalore, India in December 2004. The 48 revised full papers presented were carefully reviewed and selected from 253 submissions. The papers are organized in topical sections on wireless network management, compilers and runtime systems, high performance scientific applications, peer-to-peer and storage systems, high performance processors and routers, grids and storage systems, energy-aware and high-performance networking, and distributed algorithms.