The Refinement of Econometric Estimation and Test Procedures


Book Description

The small sample properties of estimators and tests are frequently too complex to be useful or are unknown. Much econometric theory is therefore developed for very large or asymptotic samples where it is assumed that the behaviour of estimators and tests will adequately represent their properties in small samples. Refined asymptotic methods adopt an intermediate position by providing improved approximations to small sample behaviour using asymptotic expansions. Dedicated to the memory of Michael Magdalinos, whose work is a major contribution to this area, this book contains chapters directly concerned with refined asymptotic methods. In addition, there are chapters focusing on new asymptotic results; the exploration through simulation of the small sample behaviour of estimators and tests in panel data models; and improvements in methodology. With contributions from leading econometricians, this collection will be essential reading for researchers and graduate students concerned with the use of asymptotic methods in econometric analysis.




Applied Econometric Analysis Using Cross Section and Panel Data


Book Description

This book is a collection of 20 chapters on chosen topics from cross-section and panel data econometrics. It explores both theoretical and practical aspects of selected cutting-edge techniques which are gaining popularity among applied econometricians, while following the motto of “keeping things simple”. Each chapter gives a basic introduction to one such method, directs readers to supplementary references, and shows an application. The book takes into account that—A: The field of econometrics is evolving very fast and leading textbooks are trying to cover some of the recent developments in revised editions. This book offers basic introduction to state-of-the-art techniques and recent advances in econometric models with detailed applications from various developing and developed countries. B: An applied researcher or practitioner may prefer reference books with a simple introduction to an advanced econometric method or model with no theorems but with a longer discussion on empirical application. Thus, an applied econometrics textbook covering these cutting-edge methods is highly warranted; a void this book attempts to fills.The book does not aim at providing a comprehensive coverage of econometric methods. The 20 chapters in this book represent only a sample of the important topics in modern econometrics, with special focus on econometrics of cross-section and panel data, while also recognizing that it is not possible to accommodate all types of models and methods even in these two categories. The book is unique as authors have also provided the theoretical background (if any) and brief literature review behind the empirical applications. It is a must-have resource for students and practitioners of modern econometrics.




Micro-Econometrics


Book Description

Up-to-date coverage of most micro-econometric topics; first half parametric, second half semi- (non-) parametric Many empirical examples and tips in applying econometric theories to data Essential ideas and steps shown for most estimators and tests; well-suited for both applied and theoretical readers




The Refinement of Econometric Estimation and Test Procedures


Book Description

This book was first published in 2007. The small sample properties of estimators and tests are frequently too complex to be useful or are unknown. Much econometric theory is therefore developed for very large or asymptotic samples where it is assumed that the behaviour of estimators and tests will adequately represent their properties in small samples. Refined asymptotic methods adopt an intermediate position by providing improved approximations to small sample behaviour using asymptotic expansions. Dedicated to the memory of Michael Magdalinos, whose work is a major contribution to this area, this book contains chapters directly concerned with refined asymptotic methods. In addition, there are chapters focusing on new asymptotic results; the exploration through simulation of the small sample behaviour of estimators and tests in panel data models; and improvements in methodology. With contributions from leading econometricians, this collection will be essential reading for researchers and graduate students concerned with the use of asymptotic methods in econometric analysis.




Time Series and Panel Data Econometrics


Book Description

This book is concerned with recent developments in time series and panel data techniques for the analysis of macroeconomic and financial data. It provides a rigorous, nevertheless user-friendly, account of the time series techniques dealing with univariate and multivariate time series models, as well as panel data models. It is distinct from other time series texts in the sense that it also covers panel data models and attempts at a more coherent integration of time series, multivariate analysis, and panel data models. It builds on the author's extensive research in the areas of time series and panel data analysis and covers a wide variety of topics in one volume. Different parts of the book can be used as teaching material for a variety of courses in econometrics. It can also be used as reference manual. It begins with an overview of basic econometric and statistical techniques, and provides an account of stochastic processes, univariate and multivariate time series, tests for unit roots, cointegration, impulse response analysis, autoregressive conditional heteroskedasticity models, simultaneous equation models, vector autoregressions, causality, forecasting, multivariate volatility models, panel data models, aggregation and global vector autoregressive models (GVAR). The techniques are illustrated using Microfit 5 (Pesaran and Pesaran, 2009, OUP) with applications to real output, inflation, interest rates, exchange rates, and stock prices.




The Oxford Handbook of Panel Data


Book Description

The Oxford Handbook of Panel Data examines new developments in the theory and applications of panel data. It includes basic topics like non-stationary panels, co-integration in panels, multifactor panel models, panel unit roots, measurement error in panels, incidental parameters and dynamic panels, spatial panels, nonparametric panel data, random coefficients, treatment effects, sample selection, count panel data, limited dependent variable panel models, unbalanced panel models with interactive effects and influential observations in panel data. Contributors to the Handbook explore applications of panel data to a wide range of topics in economics, including health, labor, marketing, trade, productivity, and macro applications in panels. This Handbook is an informative and comprehensive guide for both those who are relatively new to the field and for those wishing to extend their knowledge to the frontier. It is a trusted and definitive source on panel data, having been edited by Professor Badi Baltagi-widely recognized as one of the foremost econometricians in the area of panel data econometrics. Professor Baltagi has successfully recruited an all-star cast of experts for each of the well-chosen topics in the Handbook.




Applied Econometrics


Book Description

Although the theme of the monograph is primarily related to “Applied Econometrics”, there are several theoretical contributions that are associated with empirical examples, or directions in which the novel theoretical ideas might be applied. The monograph is associated with significant and novel contributions in theoretical and applied econometrics; economics; theoretical and applied financial econometrics; quantitative finance; risk; financial modeling; portfolio management; optimal hedging strategies; theoretical and applied statistics; applied time series analysis; forecasting; applied mathematics; energy economics; energy finance; tourism research; tourism finance; agricultural economics; informatics; data mining; bibliometrics; and international rankings of journals and academics.




D-scoring Method of Measurement


Book Description

D-scoring Method of Measurement presents a unified framework of classical and latent measurement referred to as D-scoring method of measurement (DSM). Provided are detailed descriptions of DSM procedures and illustrative examples of how to apply the DSM in various scenarios of measurement. The DSM is designed to combine merits of the traditional CTT and IRT for the purpose of transparency, ease of interpretations, computational simplicity of test scoring and scaling, and practical efficiency, particularly in large-scale assessments. Through detailed descriptions of DSM procedures, this book shows how practical applications of such procedures are facilitated by the inclusion of operationalized guidance for their execution using the computer program DELTA for DSM-based scoring, equating, and item analysis of test data. In doing so, the book shows how DSM procedures can be readily translated into computer source codes for other popular software packages such as R. D-scoring Method of Measurement equips researchers and practitioners in the field of educational and psychological measurement with a comprehensive understanding of the DSM as a unified framework of classical and latent scoring, equating, and psychometric analysis.




Essays in Honor of M. Hashem Pesaran


Book Description

The collection of chapters in Volume 43 Part B of Advances in Econometrics serves as a tribute to one of the most innovative, influential, and productive econometricians of his generation, Professor M. Hashem Pesaran.




Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications


Book Description

This book constitutes the refereed proceedings of the 20th Iberoamerican Congress on Pattern Recognition, CIARP 2015, held in Montevideo, Uruguay, in November 2015. The 95 papers presented were carefully reviewed and selected from 185 submissions. The papers are organized in topical sections on applications on pattern recognition; biometrics; computer vision; gesture recognition; image classification and retrieval; image coding, processing and analysis; segmentation, analysis of shape and texture; signals analysis and processing; theory of pattern recognition; video analysis, segmentation and tracking.