The Roadmap to AI Mastery: A Guide to Building and Scaling Projects


Book Description

Are you a project or product manager or a tech enthusiast with little to no technical background in AI, but interested in harnessing the power of AI for your company's success? "The Roadmap to AI Mastery: A Guide to Building and Scaling Projects" is the perfect starting point for you. This practical guide, targeted towards project managers, product managers, and AI enthusiasts with non-technical backgrounds, covers everything from the introductory fundamentals of AI to selecting the right framework, creating AI models, overcoming common challenges, and more. Using real-world examples and a friendly tone, this book will help you gain introductory foundational understanding and confidence in building and scaling AI projects for your company's business goals. Don't wait to start your journey to AI mastery.




Introducing MLOps


Book Description

More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact. This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout. This book helps you: Fulfill data science value by reducing friction throughout ML pipelines and workflows Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized




AI and education


Book Description

Artificial Intelligence (AI) has the potential to address some of the biggest challenges in education today, innovate teaching and learning practices, and ultimately accelerate the progress towards SDG 4. However, these rapid technological developments inevitably bring multiple risks and challenges, which have so far outpaced policy debates and regulatory frameworks. This publication offers guidance for policy-makers on how best to leverage the opportunities and address the risks, presented by the growing connection between AI and education. It starts with the essentials of AI: definitions, techniques and technologies. It continues with a detailed analysis of the emerging trends and implications of AI for teaching and learning, including how we can ensure the ethical, inclusive and equitable use of AI in education, how education can prepare humans to live and work with AI, and how AI can be applied to enhance education. It finally introduces the challenges of harnessing AI to achieve SDG 4 and offers concrete actionable recommendations for policy-makers to plan policies and programmes for local contexts. [Publisher summary, ed]




60 Days to LinkedIn Mastery


Book Description

There's only one place in the world where you can find and connect with hundreds of millions of professionals every day, and that's on LinkedIn. Are you taking advantage of it? Or are you who Gary Vaynerchuk is talking about when he says, "So many . . . are missing out on the insane opportunity on LinkedIn right now."Tragically, too many of the almost 800 million people on LinkedIn are missing out because they use it the wrong way, but that spells opportunity for those who use it correctly. The good news is, with this book as your guide, you'll be an expert LinkedIn user in no time.Whether you're an employee who dreams of finding a new job, an executive who needs to hire star talent, or an entrepreneur who wants to grow a business, LinkedIn Mastery is the super-simple, straightforward, practical blueprint that will help you achieve your goals.This step-by-step guide to mastering LinkedIn will teach you how to:Optimize your LinkedIn profile so it's something you're proud to show off, rather than something you want to hideMake high-quality connections on LinkedIn with your ideal audience-the people you can serve and who can serve youCreate compelling content-quickly, easily, and affordably-that will bring your dream opportunities to youThis book contains 60 LinkedIn lessons, each short enough to understand and implement in 15 minutes or less. If you complete one each day, within 60 days you'll fully master LinkedIn. If you're looking to find a new job, your LinkedIn profile will attract the best employers and the best offers. If you're recruiting, you'll find and connect with top talent. And if you're generating leads and growing your business, you'll create content that brings your ideal customer to you.Are you ready for your first lesson?




Data Science on the Google Cloud Platform


Book Description

Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you’ll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You’ll learn how to: Automate and schedule data ingest, using an App Engine application Create and populate a dashboard in Google Data Studio Build a real-time analysis pipeline to carry out streaming analytics Conduct interactive data exploration with Google BigQuery Create a Bayesian model on a Cloud Dataproc cluster Build a logistic regression machine-learning model with Spark Compute time-aggregate features with a Cloud Dataflow pipeline Create a high-performing prediction model with TensorFlow Use your deployed model as a microservice you can access from both batch and real-time pipelines




Trustworthy Online Controlled Experiments


Book Description

Getting numbers is easy; getting numbers you can trust is hard. This practical guide by experimentation leaders at Google, LinkedIn, and Microsoft will teach you how to accelerate innovation using trustworthy online controlled experiments, or A/B tests. Based on practical experiences at companies that each run more than 20,000 controlled experiments a year, the authors share examples, pitfalls, and advice for students and industry professionals getting started with experiments, plus deeper dives into advanced topics for practitioners who want to improve the way they make data-driven decisions. Learn how to • Use the scientific method to evaluate hypotheses using controlled experiments • Define key metrics and ideally an Overall Evaluation Criterion • Test for trustworthiness of the results and alert experimenters to violated assumptions • Build a scalable platform that lowers the marginal cost of experiments close to zero • Avoid pitfalls like carryover effects and Twyman's law • Understand how statistical issues play out in practice.




Building a Second Brain


Book Description

"Building a second brain is getting things done for the digital age. It's a ... productivity method for consuming, synthesizing, and remembering the vast amount of information we take in, allowing us to become more effective and creative and harness the unprecedented amount of technology we have at our disposal"--




The Elements of Statistical Learning


Book Description

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.




Artificial Intelligence Simplified


Book Description

The book introduces key Artificial Intelligence (AI) concepts in an easy-to-read format with examples and illustrations. A complex, long, overly mathematical textbook does not always serve the purpose of conveying the basic AI concepts to most people. Someone with basic knowledge in Computer Science can have a quick overview of AI (heuristic searches, genetic algorithms, expert systems, game trees, fuzzy expert systems, natural language processing, super intelligence, etc.) with everyday examples. If you are taking a basic AI course and find the traditional AI textbooks intimidating, you may choose this as a “bridge” book, or as an introductory textbook. For students, there is a lower priced edition (ISBN 978-1944708016) of the same book. Published by CSTrends LLP.




Product-Led Growth


Book Description

"Product-Led Growth is about helping your customers experience the ongoing value your product provides. It is a critical step in successful product design and this book shows you how it's done." - Nir Eyal, Wall Street Journal Bestselling Author of "Hooked"