The Role of Advection in a Two-Species Competition Model: A Bifurcation Approach


Book Description

The effects of weak and strong advection on the dynamics of reaction-diffusion models have long been studied. In contrast, the role of intermediate advection remains poorly understood. For example, concentration phenomena can occur when advection is strong, providing a mechanism for the coexistence of multiple populations, in contrast with the situation of weak advection where coexistence may not be possible. The transition of the dynamics from weak to strong advection is generally difficult to determine. In this work the authors consider a mathematical model of two competing populations in a spatially varying but temporally constant environment, where both species have the same population dynamics but different dispersal strategies: one species adopts random dispersal, while the dispersal strategy for the other species is a combination of random dispersal and advection upward along the resource gradient. For any given diffusion rates the authors consider the bifurcation diagram of positive steady states by using the advection rate as the bifurcation parameter. This approach enables the authors to capture the change of dynamics from weak advection to strong advection. The authors determine three different types of bifurcation diagrams, depending on the difference of diffusion rates. Some exact multiplicity results about bifurcation points are also presented. The authors' results can unify some previous work and, as a case study about the role of advection, also contribute to the understanding of intermediate (relative to diffusion) advection in reaction-diffusion models.




The Dynamics of Biological Systems


Book Description

The book presents nine mini-courses from a summer school, Dynamics of Biological Systems, held at the University of Alberta in 2016, as part of the prestigious seminar series: Séminaire de Mathématiques Supérieures (SMS). It includes new and significant contributions in the field of Dynamical Systems and their applications in Biology, Ecology, and Medicine. The chapters of this book cover a wide range of mathematical methods and biological applications. They - explain the process of mathematical modelling of biological systems with many examples, - introduce advanced methods from dynamical systems theory, - present many examples of the use of mathematical modelling to gain biological insight - discuss innovative methods for the analysis of biological processes, - contain extensive lists of references, which allow interested readers to continue the research on their own. Integrating the theory of dynamical systems with biological modelling, the book will appeal to researchers and graduate students in Applied Mathematics and Life Sciences.




Introduction to Reaction-Diffusion Equations


Book Description

This book introduces some basic mathematical tools in reaction-diffusion models, with applications to spatial ecology and evolutionary biology. It is divided into four parts. The first part is an introduction to the maximum principle, the theory of principal eigenvalues for elliptic and periodic-parabolic equations and systems, and the theory of principal Floquet bundles. The second part concerns the applications in spatial ecology. We discuss the dynamics of a single species and two competing species, as well as some recent progress on N competing species in bounded domains. Some related results on stream populations and phytoplankton populations are also included. We also discuss the spreading properties of a single species in an unbounded spatial domain, as modeled by the Fisher-KPP equation. The third part concerns the applications in evolutionary biology. We describe the basic notions of adaptive dynamics, such as evolutionarily stable strategies and evolutionary branching points, in the context of a competition model of stream populations. We also discuss a class of selection-mutation models describing a population structured along a continuous phenotypical trait. The fourth part consists of several appendices, which present a self-contained treatment of some basic abstract theories in functional analysis and dynamical systems. Topics include the Krein-Rutman theorem for linear and nonlinear operators, as well as some elements of monotone dynamical systems and abstract competition systems. Most of the book is self-contained and it is aimed at graduate students and researchers who are interested in the theory and applications of reaction-diffusion equations.




Induction, Bounding, Weak Combinatorial Principles, and the Homogeneous Model Theorem


Book Description

Goncharov and Peretyat'kin independently gave necessary and sufficient conditions for when a set of types of a complete theory is the type spectrum of some homogeneous model of . Their result can be stated as a principle of second order arithmetic, which is called the Homogeneous Model Theorem (HMT), and analyzed from the points of view of computability theory and reverse mathematics. Previous computability theoretic results by Lange suggested a close connection between HMT and the Atomic Model Theorem (AMT), which states that every complete atomic theory has an atomic model. The authors show that HMT and AMT are indeed equivalent in the sense of reverse mathematics, as well as in a strong computability theoretic sense and do the same for an analogous result of Peretyat'kin giving necessary and sufficient conditions for when a set of types is the type spectrum of some model.




Applications of Polyfold Theory I: The Polyfolds of Gromov-Witten Theory


Book Description

In this paper the authors start with the construction of the symplectic field theory (SFT). As a general theory of symplectic invariants, SFT has been outlined in Introduction to symplectic field theory (2000), by Y. Eliashberg, A. Givental and H. Hofer who have predicted its formal properties. The actual construction of SFT is a hard analytical problem which will be overcome be means of the polyfold theory due to the present authors. The current paper addresses a significant amount of the arising issues and the general theory will be completed in part II of this paper. To illustrate the polyfold theory the authors use the results of the present paper to describe an alternative construction of the Gromov-Witten invariants for general compact symplectic manifolds.




Rationality Problem for Algebraic Tori


Book Description

The authors give the complete stably rational classification of algebraic tori of dimensions and over a field . In particular, the stably rational classification of norm one tori whose Chevalley modules are of rank and is given. The authors show that there exist exactly (resp. , resp. ) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension , and there exist exactly (resp. , resp. ) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension . The authors make a procedure to compute a flabby resolution of a -lattice effectively by using the computer algebra system GAP. Some algorithms may determine whether the flabby class of a -lattice is invertible (resp. zero) or not. Using the algorithms, the suthors determine all the flabby and coflabby -lattices of rank up to and verify that they are stably permutation. The authors also show that the Krull-Schmidt theorem for -lattices holds when the rank , and fails when the rank is ...




Maximal Cohen-Macaulay Modules Over Non-Isolated Surface Singularities and Matrix Problems


Book Description

In this article the authors develop a new method to deal with maximal Cohen–Macaulay modules over non–isolated surface singularities. In particular, they give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen–Macaulay modules. Next, the authors prove that the degenerate cusp singularities have tame Cohen–Macaulay representation type. The authors' approach is illustrated on the case of k as well as several other rings. This study of maximal Cohen–Macaulay modules over non–isolated singularities leads to a new class of problems of linear algebra, which the authors call representations of decorated bunches of chains. They prove that these matrix problems have tame representation type and describe the underlying canonical forms.




Special Values of the Hypergeometric Series


Book Description

In this paper, the author presents a new method for finding identities for hypergeoemtric series, such as the (Gauss) hypergeometric series, the generalized hypergeometric series and the Appell-Lauricella hypergeometric series. Furthermore, using this method, the author gets identities for the hypergeometric series and shows that values of at some points can be expressed in terms of gamma functions, together with certain elementary functions. The author tabulates the values of that can be obtained with this method and finds that this set includes almost all previously known values and many previously unknown values.




Knot Invariants and Higher Representation Theory


Book Description

The author constructs knot invariants categorifying the quantum knot variants for all representations of quantum groups. He shows that these invariants coincide with previous invariants defined by Khovanov for sl and sl and by Mazorchuk-Stroppel and Sussan for sl . The author's technique is to study 2-representations of 2-quantum groups (in the sense of Rouquier and Khovanov-Lauda) categorifying tensor products of irreducible representations. These are the representation categories of certain finite dimensional algebras with an explicit diagrammatic presentation, generalizing the cyclotomic quotient of the KLR algebra. When the Lie algebra under consideration is sl , the author shows that these categories agree with certain subcategories of parabolic category for gl .




Property ($T$) for Groups Graded by Root Systems


Book Description

The authors introduce and study the class of groups graded by root systems. They prove that if is an irreducible classical root system of rank and is a group graded by , then under certain natural conditions on the grading, the union of the root subgroups is a Kazhdan subset of . As the main application of this theorem the authors prove that for any reduced irreducible classical root system of rank and a finitely generated commutative ring with , the Steinberg group and the elementary Chevalley group have property . They also show that there exists a group with property which maps onto all finite simple groups of Lie type and rank , thereby providing a “unified” proof of expansion in these groups.