The Role of Calcium and Comparable Cations in Animal Behaviour


Book Description

Calcium and comparable cations are fast being recognised for their role as vital components of animal physiology. When trying to answer questions such as why salmon can adjust to life in fresh water as well as seawater, or why chilli peppers taste hot to humans but evoke little response from chickens, we often find the answers lie in patterns of movement of these ions and their roles in sensing, transmitting and collecting messages. Bringing together scattered literature on calcium, sodium, potassium and magnesium in biology, this book examines important biological contributions of these ions including enzyme activation, effects in all types of muscle and biomineralization. Attention is focused on: channel construction and ion movement; calcium as a second messenger and in the construction of solids and ion channelopathies, with the help of personalities such as Agatha Christie, van Gogh and Captain Cook. The Role of Calcium and Comparable Cations in Animal Behaviour will be valued by a wide-range of readers including students of bioinorganic chemistry and animal behavioural studies, teachers and other professionals in academia.




The Endothelium


Book Description

The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References







Inorganic Reaction Mechanisms


Book Description

Inorganic Reaction Mechanisms, Volume 70 is the latest volume in the Advances in Inorganic Chemistry series that presents timely summaries of current progress in inorganic chemistry, ranging from bio-inorganic to solid state studies. Topics covered in this updated volume include The Kinetics and Mechanism of Complex Redox Reactions in Aqueous Solution: The Tools of the Trade, O-O Bond Activation in Cu and Fe-Based Coordination Complexes: Breaking it Makes the Difference, μ-Nitrido Diiron Phthalocyanine and Porphyrin Complexes: Unusual Structures With Interesting Catalytic Properties, and The Role of Nonheme Transition Metal-Oxo, -Peroxo and -Superoxo Intermediates in Enzyme Catalysis and Reactions of Bioinspired Complexes. This acclaimed serial features reviews written by experts in the field, serving as an indispensable reference to advanced researchers. Each volume contains an index and chapters are fully referenced. Features comprehensive reviews on the latest developments in inorganic reaction mechanisms, a subfield of inorganic chemistry Includes contributions from leading experts in the field of inorganic reaction mechanisms Serves as an indispensable reference to advanced researchers in inorganic reaction mechanisms







Calcium Entry Channels in Non-Excitable Cells


Book Description

Calcium Entry Channels in Non-Excitable Cells focuses on methods of investigating the structure and function of non-voltage gated calcium channels. Each chapter presents important discoveries in calcium entry pathways, specifically dealing with the molecular identification of store-operated calcium channels which were reviewed by earlier volumes in the Methods in Signal Transduction series. Crystallographic and pharmacological approaches to the study of calcium channels of epithelial cells are also discussed. Calcium ion is a messenger in most cell types. Whereas voltage gated calcium channels have been studied extensively, the non-voltage gated calcium entry channel genes have only been identified relatively recently. The book will fill this important niche.




Advances in Comparative and Environmental Physiology


Book Description

In the past 5 years there has been an enormous increase of evidence that the ion channels activated by mechanical force are common to a wide variety of cell types. Mechanosensitive (MS) ion channels form a small proportion of the total channel population. They are now found in more than 30 cell types from E. coli, yeast, to plant, invertebrate, and vertebrate cells, where they occur in virtually all types of cells from bone to smooth muscle, as well as neurons. The majority of MS channels are permeable to monovalent cations and are slightly selective for K+ over Na +. How 2 ever, there are several reports of anion-selective MS channels, MS Ca + channels, and MS channels with large conductances that do not dis criminate markedly between cations and anions. Recently B. Hille has postulated possible evolutionary relationships between several types of ion channels, with mechanosensitive channels predating even the eukaryotes. Two voltage-gated channel types originate with the stem eukaryotes, as deduced from the presence of voltage-gated K+ 2 and Ca + channels in protozoa, algae, or higher plants. Agonist-gated chan nels as well as voltage-gated Na + channels appear with the earliest metazoan animals, as deduced from the presence of Na + spikes and fast chemical synapses in cnidaria (coelenterates), ctenophores, and all higher animals.










Advanced Metal Ion Storage Technologies


Book Description

This book focusses on the current research on materials for advanced battery technologies and proposes future directions for different types of batteries to meet the current challenges associated with the fuel cell. Furthermore, it provides insights into scientific and practical issues in the development of various batteries like sodium, potassium, zinc, magnesium, aluminum, calcium, and dual metal ion, to bring a new perspective to storage technologies beyond lithium-ion batteries. It introduces different themes of batteries to evaluate the opportunities and challenges of these battery systems from a commercial aspect. Key features: Deals with different potential rechargeable battery systems as suitable substitutes for LIBs Discusses different investigated materials as anode, cathode, and electrolytes for different energy storage systems Provides a complete and comprehensive review of all the existing metal-ion batteries Includes practical challenges and future opportunities of each battery category Reviews commercial aspects of different battery systems This book is aimed at researchers, graduate students, and professionals in industrial and applied chemistry, renewable energy, clean and sustainable processes, chemical engineering, materials science, nanotechnology, and battery chemistry.