The Rotating Beam Problem in Helicopter Dynamics


Book Description

The book addresses computational methods for solving the problem of vibration, response, loads and stability of a helicopter rotor blade modeled as a rotating beam with flap or out-of-plane bending. The focus is on explaining the implementation of the finite element method in the space and time domain for the free vibration, aeroelastic response and stability problems. The use of Floquet analysis for the aeroelastic stability analysis of rotor blades is also shown. The contents of the book will be useful to researchers in aerodynamics and applied mechanics, and will also serve well professionals working in the aerospace industry.




Finite Element Analysis of Rotating Beams


Book Description

This book addresses the solution of rotating beam free-vibration problems using the finite element method. It provides an introduction to the governing equation of a rotating beam, before outlining the solution procedures using Rayleigh-Ritz, Galerkin and finite element methods. The possibility of improving the convergence of finite element methods through a judicious selection of interpolation functions, which are closer to the problem physics, is also addressed. The book offers a valuable guide for students and researchers working on rotating beam problems – important engineering structures used in helicopter rotors, wind turbines, gas turbines, steam turbines and propellers – and their applications. It can also be used as a textbook for specialized graduate and professional courses on advanced applications of finite element analysis.




Smart Helicopter Rotors


Book Description

Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibration caused by dynamic stall. The exposition of ideas, materials and algorithms in this monograph is supported by extensive reporting of results from numerical simulations of smart helicopter rotors. This monograph will be a valuable source of reference for researchers and engineers with backgrounds in aerospace, mechanical and electrical engineering interested in smart materials and vibration control. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.




Fundamentals of Helicopter Dynamics


Book Description

Helicopter Dynamics Introduced in an Organized and Systematic Manner A result of lecture notes for a graduate-level introductory course as well as the culmination of a series of lectures given to designers, engineers, operators, users, and researchers, Fundamentals of Helicopter Dynamics provides a fundamental understanding and a thorough overview of helicopter dynamics and aerodynamics. Written at a basic level, this text starts from first principles and moves fluidly onward from simple to more complex systems. Gain Valuable Insight on Helicopter Theory Divided into 11 chapters, this text covers historical development, hovering and vertical flight, simplified rotor blade model in flap mode, and forward flight. It devotes two chapters to the aeroelastic response and stability analysis of isolated rotor blade in uncoupled and coupled modes. Three chapters address the modeling of coupled rotor–fuselage dynamics and the associated flight dynamic stability, and provide a simplified analysis of the ground resonance aeromechanical stability of a helicopter. Explains equations derived from first principles and approximations Contains a complete set of equations which can be used for preliminary studies Requires a basic first–level course in dynamics, as well as a basic first–level course in aerodynamics Useful for any student who wants to learn the complexities of dynamics in a flying vehicle, Fundamentals of Helicopter Dynamics is an ideal resource for aerospace/aeronautical, helicopter, and mechanical/control engineers, as well as air force schools and helicopter/rotorcraft manufacturers.




Rotary Wing Structural Dynamics and Aeroelasticity


Book Description

Drawing on his extensive experience as a practicing engineer, designer, educator, and researcher in rotorcraft, the author presents a comprehensive account of the fundamental concepts of structural dynamics and aeroelasticity for conventional rotary wing aircraft, as well as for tilt-rotor and tilt-wing concepts. Intended for use in graduate-level courses and by practicing engineers, the volume covers all of the important topics needed for the complete understanding of rotorcraft structural dynamics and aeroelasticity, including basic analysis tools, rotating beams, gyroscopic phenomena, drive system dynamics, fuselage vibrations, methods for controlling vibrations, dynamic test procedures, stability analysis, mechanical and aeromechanical instabilities of rotors and rotor-pylon assemblies, unsteady aerodynamics and flutter of rotors, and model testing. The second edition provides more up-to-date solution techniques, as well as new material that the author has developed since the first edition. New chapters address elastomeric devices, airfoil sections with an emphasis on composites, cross-over topics, and a historical perspective on the subject material. A new appendix presents basic material on composites. The text is further enhanced by the inclusion of problems in each chapter.




Proceedings of the 14th International Conference on Vibration Problems


Book Description

This book presents the select proceedings of the 14th International Conference on Vibration Problems (ICOVP 2019) held in Crete, Greece. The volume brings together contributions from researchers working on vibration related problems in a wide variety of engineering disciplines such as mechanical engineering, wind and earthquake engineering, nuclear engineering, aeronautics, robotics, and transport systems. The focus is on latest developments and cutting-edge methods in wave mechanics and vibrations, and includes theoretical, experimental, as well as applied studies. The range of topics and the up-to-date results covered in this volume make this interesting for students, researchers, and professionals alike.




Nonlinear Equations for Dynamics of Pretwisted Beams Undergoing Small Strains and Large Rotations


Book Description

Nonlinear beam kinematics are developed and applied to the dynamic analysis of a pretwisted, rotating beam element. The common practice of assuming moderate rotations caused by structural deformation in geometric nonlinear analyses of rotating beams has been abandoned in the present analysis. The kinematic relations that describe the orientation of the cross section during deformation are simplified by systematically ignoring the extensional strain compared to unity in those relations. Open cross section effects such as warping rigidity and dynamics are ignored, but other influences of warp are retained. THe beam cross section is not allowed to deform in its own plane. Various means of implementation are discussed, including a finite element formulation. Numerical results obtained for nonlinear static problems show remarkable agreement with experiment. Keywords: Dynamic structural analysis; Rotating beams; Helicopter rotors. (Author).







The Dynamics of Slender Beams. Helicopter Rotor Study i


Book Description

The purpose of the study is to formulate a non-linear exact theory for large amplitude flap-wise vibration of helicopter rotors. Previous linear beam theories, employing the assumption of small displacement, are limited in their treatment of the rotor problem. Some nonlinear theories have been developed. But these investigations, in one way or another, suffer from questionable assumptions and the true nature of the dynamics of a slender beam is not clearly understood. Beam equations for large amplitude vibration are formulated to include axial forces, shear deformation and rotatory inertia effects. (Author).




Statics and Rotational Dynamics of Composite Beams


Book Description

This book presents a comprehensive study of the nonlinear statics and dynamics of composite beams and consists of solutions with and without active elements embedded in the beams. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Two independent numerical solutions for the steady state and the transient responses are presented. The author illustrates that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. Other key areas considered include calculation of the effect of perturbing the steady state solution, coupled nonlinear flap-lag dynamics of a rotating articulated beam with hinge offset and aerodynamic damping, and static and dynamic responses of nonlinear composite beams with embedded anisotropic piezo-composite actuators. The book is intended as a thorough study of nonlinear elasticity of slender beams and is targeted to researchers, graduate students, and practicing engineers in the fields of structural dynamics, aerospace structures, and mechanical engineering.