Shock Wave-Boundary-Layer Interactions


Book Description

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.




Modern Developments in Gas Dynamics


Book Description

During the last decade, the rapid growth of knowledge in the field of fluid mechanics and heat transfer has resulted in many significant ad vances of interest to students, engineers, and scientists. Accordingly, a course entitled "Modern Developments in Fluid Mechanics and Heat Transfer" was given at the University of California to present significant recent theoretical and experimental work. The course consisted of seven parts: I-Introduction; II-Hydraulic Analogy for Gas Dynamics; 111- Turbulence and Unsteady Gas Dynamics; IV-Rarefied and Radiation Gas Dynamics; V-Biological Fluid Mechanics; VI-Hypersonic and Plasma Gas Dynamics; and VII-Heat Transfer in Hypersonic Flows. The material, presented by the undersigned as course instructor and by various guest lecturers, could easily be adapted by other universities for use as a text for a one-semester senior or graduate course on the subject. Due to the extensive notes developed during the University of California course, it was decided to publish the material in three volumes, of which the present is the first. The succeeding volumes will be entitled "Selected Topics in Fluid and Bio-Fluid Mechanics" and "Introduction to Steady and Unsteady Gas Dynamics." Finally, I must express a word of appreciation to my wife Irene and to my children, Wellington Jr. and Victoria, who made it possible for me to write and edit this book in the very quiet atmosphere of our home.




On the Hypersonic Flow Past Blunted, Flat Delta Wings


Book Description

The flow of a perfect gas over the slab portion of a blunted delta wing flying at hypersonic speeds is studied. A set of approximate equations is derived and a solution - for an inviscid flow - is obtained. Using this solution as a representation for the inviscid flow problem, a formulation to the laminar boundary-layer equations is presented; one which is applicable to the flow field's azimuthal planes where the crossflow gradients are not too large. Numerical solutions to these boundary-layer equations have been obtained; however, these are restricted to the azimuthal planes and near to the leading edges. The results indicate the presence of a dividing surface streamline since a numerical solution could not be obtained near the centerplane of the wing, where the crossflow velocity is large. (Author).













Computational Fluid Mechanics and Heat Transfer, Second Edition


Book Description

This comprehensive text provides basic fundamentals of computational theory and computational methods. The book is divided into two parts. The first part covers material fundamental to the understanding and application of finite-difference methods. The second part illustrates the use of such methods in solving different types of complex problems encountered in fluid mechanics and heat transfer. The book is replete with worked examples and problems provided at the end of each chapter.







Super- and Hypersonic Aerodynamics and Heat Transfer


Book Description

Recent government and commercial efforts to develop orbital and suborbital passenger and transport aircraft have resulted in a burgeoning of new research. The articles in this book, translated from Russian, were contributed by the world's leading authorities on supersonic and hypersonic flows and heat transfer. This superb book addresses the physics and engineering aspects of ultra high-speed aerodynamic problems. Thorough coverage is given to an array of specific problem-solving equations. Super- and Hypersonic Aerodynamics and Heat Transfer will be essential reading for all aeronautical engineers, mechanical engineers, mathematicians, and physicists involved in this exciting field of research.