The Skew-Normal and Related Families


Book Description

The standard resource for statisticians and applied researchers. Accessible to the wide range of researchers who use statistical modelling techniques.




Skew-Elliptical Distributions and Their Applications


Book Description

This book reviews the state-of-the-art advances in skew-elliptical distributions and provides many new developments in a single volume, collecting theoretical results and applications previously scattered throughout the literature. The main goal of this research area is to develop flexible parametric classes of distributions beyond the classical no




Symmetric Multivariate and Related Distributions


Book Description

Since the publication of the by now classical Johnson and Kotz Continuous Multivariate Distributions (Wiley, 1972) there have been substantial developments in multivariate distribution theory especially in the area of non-normal symmetric multivariate distributions. The book by Fang, Kotz and Ng summarizes these developments in a manner which is accessible to a reader with only limited background (advanced real-analysis calculus, linear algebra and elementary matrix calculus). Many of the results in this field are due to Kai-Tai Fang and his associates and appeared in Chinese publications only. A thorough literature search was conducted and the book represents the latest work - as of 1988 - in this rapidly developing field of multivariate distributions. The authors are experts in statistical distribution theory.




Symmetric and Asymmetric Distributions


Book Description

In recent years, the advances and abilities of computer software have substantially increased the number of scientific publications that seek to introduce new probabilistic modelling frameworks, including continuous and discrete approaches, and univariate and multivariate models. Many of these theoretical and applied statistical works are related to distributions that try to break the symmetry of the normal distribution and other similar symmetric models, mainly using Azzalini's scheme. This strategy uses a symmetric distribution as a baseline case, then an extra parameter is added to the parent model to control the skewness of the new family of probability distributions. The most widespread and popular model is the one based on the normal distribution that produces the skewed normal distribution. In this Special Issue on symmetric and asymmetric distributions, works related to this topic are presented, as well as theoretical and applied proposals that have connections with and implications for this topic. Immediate applications of this line of work include different scenarios such as economics, environmental sciences, biometrics, engineering, health, etc. This Special Issue comprises nine works that follow this methodology derived using a simple process while retaining the rigor that the subject deserves. Readers of this Issue will surely find future lines of work that will enable them to achieve fruitful research results.




The Multivariate Normal Distribution


Book Description

The multivariate normal distribution has played a predominant role in the historical development of statistical theory, and has made its appearance in various areas of applications. Although many of the results concerning the multivariate normal distribution are classical, there are important new results which have been reported recently in the literature but cannot be found in most books on multivariate analysis. These results are often obtained by showing that the multivariate normal density function belongs to certain large families of density functions. Thus, useful properties of such families immedi ately hold for the multivariate normal distribution. This book attempts to provide a comprehensive and coherent treatment of the classical and new results related to the multivariate normal distribution. The material is organized in a unified modern approach, and the main themes are dependence, probability inequalities, and their roles in theory and applica tions. Some general properties of a multivariate normal density function are discussed, and results that follow from these properties are reviewed exten sively. The coverage is, to some extent, a matter of taste and is not intended to be exhaustive, thus more attention is focused on a systematic presentation of results rather than on a complete listing of them.




An Introduction to Regression Graphics


Book Description

Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.




Life Distributions


Book Description

This book is devoted to the study of univariate distributions appropriate for the analyses of data known to be nonnegative. The book includes much material from reliability theory in engineering and survival analysis in medicine.




Graphical Models with R


Book Description

Graphical models in their modern form have been around since the late 1970s and appear today in many areas of the sciences. Along with the ongoing developments of graphical models, a number of different graphical modeling software programs have been written over the years. In recent years many of these software developments have taken place within the R community, either in the form of new packages or by providing an R interface to existing software. This book attempts to give the reader a gentle introduction to graphical modeling using R and the main features of some of these packages. In addition, the book provides examples of how more advanced aspects of graphical modeling can be represented and handled within R. Topics covered in the seven chapters include graphical models for contingency tables, Gaussian and mixed graphical models, Bayesian networks and modeling high dimensional data.




Statistical Inference Based on the likelihood


Book Description

The Likelihood plays a key role in both introducing general notions of statistical theory, and in developing specific methods. This book introduces likelihood-based statistical theory and related methods from a classical viewpoint, and demonstrates how the main body of currently used statistical techniques can be generated from a few key concepts, in particular the likelihood. Focusing on those methods, which have both a solid theoretical background and practical relevance, the author gives formal justification of the methods used and provides numerical examples with real data.




Statistics from A to Z


Book Description

Statistics is confusing, even for smart, technically competent people. And many students and professionals find that existing books and web resources don’t give them an intuitive understanding of confusing statistical concepts. That is why this book is needed. Some of the unique qualities of this book are: • Easy to Understand: Uses unique “graphics that teach” such as concept flow diagrams, compare-and-contrast tables, and even cartoons to enhance “rememberability.” • Easy to Use: Alphabetically arranged, like a mini-encyclopedia, for easy lookup on the job, while studying, or during an open-book exam. • Wider Scope: Covers Statistics I and Statistics II and Six Sigma Black Belt, adding such topics as control charts and statistical process control, process capability analysis, and design of experiments. As a result, this book will be useful for business professionals and industrial engineers in addition to students and professionals in the social and physical sciences. In addition, each of the 60+ concepts is covered in one or more articles. The 75 articles in the book are usually 5–7 pages long, ensuring that things are presented in “bite-sized chunks.” The first page of each article typically lists five “Keys to Understanding” which tell the reader everything they need to know on one page. This book also contains an article on “Which Statistical Tool to Use to Solve Some Common Problems”, additional “Which to Use When” articles on Control Charts, Distributions, and Charts/Graphs/Plots, as well as articles explaining how different concepts work together (e.g., how Alpha, p, Critical Value, and Test Statistic interrelate). ANDREW A. JAWLIK received his B.S. in Mathematics and his M.S. in Mathematics and Computer Science from the University of Michigan. He held jobs with IBM in marketing, sales, finance, and information technology, as well as a position as Process Executive. In these jobs, he learned how to communicate difficult technical concepts in easy - to - understand terms. He completed Lean Six Sigma Black Belt coursework at the IASSC - accredited Pyzdek Institute. In order to understand the confusing statistics involved, he wrote explanations in his own words and graphics. Using this material, he passed the certification exam with a perfect score. Those statistical explanations then became the starting point for this book.