The Sodium-Hydrogen Exchanger


Book Description

I am extremely honored and pleased to have the opportunity to write a few introductory words for this timely volume on Na + /It exchange. This is a field of investigation that I entered into by challenge and necessity, embraced with passion and fmally left in my quest for new discoveries in growth control. Ten years, one third of my scientific life, has been devoted to uncovering the mysteries of intracellular pH (PH;) regulation with respect to growth factor action. I got started on this new topic in 1980, when I heard a rather provocative hypothesis presented by Enrique Rozengurt at an ICN-UCLA Keystone meeting on "Cell Surface and Malignancy". He showed that all mitogens induced amiloride-sensitive Na + entry into resting cells and proposed that, if a compound stimulates Na + influx, it could be a mitogen. In support of his proposal Enrique reported that the amphipathic polypeptide, mellitin, which induced Na+ influx, was indeed mitogenic for 3T3 cells. This was only correlation at this stage. However, I was fascinated by this talk. I immediately approached Enrique to inform him of my skepticism about this beautiful story, and to indicate that I would only be convinced when I succeeded in isolating mutant fibroblasts lacking the amiloride-sensitive Na+ transporter. ''Good luck!" was his response.




The Na+/H+ Exchanger


Book Description




Na+H+ Exchange


Book Description

Prepared by leading scientists in the field, these volumes compile for the first time, concise, up-to-date reviews of several aspects of the basic properties, distribution, function and regulation of the Na+/H+ antiport. In addition, current methods and the use of inhibitors and ligands for the study of the exchanger are described. These volumes are indispendable to researchers and students in the areas of ion transport, membrane biology and cellular physiology.




Neural Control of Renal Function


Book Description

The kidney is innervated with efferent sympathetic nerve fibers reaching the renal vasculature, the tubules, the juxtaglomerular granular cells, and the renal pelvic wall. The renal sensory nerves are mainly found in the renal pelvic wall. Increases in efferent renal sympathetic nerve activity reduce renal blood flow and urinary sodium excretion by activation of α1-adrenoceptors and increase renin secretion rate by activation of β1-adrenoceptors. In response to normal physiological stimulation, changes in efferent renal sympathetic nerve activity contribute importantly to homeostatic regulation of sodium and water balance. The renal mechanosensory nerves are activated by stretch of the renal pelvic tissue produced by increases in renal pelvic tissue of a magnitude that may occur during increased urine flow rate. Activation of the sensory nerves elicits an inhibitory renorenal reflex response consisting of decreases in efferent renal sympathetic nerve activity leading to natriuresis. Increasing efferent sympathetic nerve activity increases afferent renal nerve activity which, in turn, decreases efferent renal sympathetic nerve activity by activation of the renorenal reflexes. Thus, activation of the afferent renal nerves buffers changes in efferent renal sympathetic nerve activity in the overall goal of maintaining sodium balance. In pathological conditions of sodium retention, impairment of the inhibitory renorenal reflexes contributes to an inappropriately increased efferent renal sympathetic nerve activity in the presence of sodium retention. In states of renal disease or injury, there is a shift from inhibitory to excitatory reflexes originating in the kidney. Studies in essential hypertensive patients have shown that renal denervation results in long-term reduction in arterial pressure, suggesting an important role for the efferent and afferent renal nerves in hypertension. Table of Contents: Part I: Efferent Renal Sympathetic Nerves / Introduction / Neuroanatomy / Neural Control of Renal Hemodynamics / Neural Control of Renal Tubular Function / Neural Control of Renin Secretion Rate / Part II: Afferent Renal Sensory Nerves / Introduction / Neuroanatomy / Renorenal Reflexes / Mechanisms Involved in the Activation of Afferent Renal Sensory Nerves / Part III: Pathophysiological States / Efferent Renal Sympathetic Nerves / Afferent Renal Sensory Nerves / Conclusions / References




The Alkali Metal Ions: Their Role for Life


Book Description

MILS-16 provides an up-to-date review of the impact of alkali metal ions on life. Their bioinorganic chemistry and analytical determination, the solid state structures of bio-ligand complexes and the properties of alkali metal ions in solution in the context of all kinds of biologically relevant ligands are covered, this includes proteins (enzymes) and nucleic acids (G-quadruplexes). Minerals containing sodium (Na+) and potassium (K+) are abundant in the Earth's crust, making Na+ and K+ easily available. In contrast, the alkali elements lithium (Li+), rubidium, and cesium are rare and the radioactive francium occurs only in traces. Since the intra- and extracellular, as well as the compartmental concentrations of Na+ and K+ differ significantly, homeostasis and active transport of these ions are important; this involves transporters/carriers and pore-forming ion channel proteins. Systems like Na+/K+-ATPases, H+/K+-ATPases or Na+/H+ antiporters are thoroughly discussed. The role of K+ in photosynthesis and the role of Na+ in charging the "battery of life" are pointed out. Also, the relationships between alkali metal ions and diseases (e.g., Parkinson or traumatic brain injury) are covered and the relevance of Li+ salts in medicine (pharmacology and mechanism) is reviewed. This and more is treated in an authoritative and timely manner in the 16 stimulating chapters of Volume 16, The Alkali Metal Ions: Their Role for Life, which are written by 44 internationally recognized experts from 12 nations. The impact of this vibrant research area is manifested in nearly 3000 references, over 30 tables and more than 150 illustrations (two thirds in color). MILS-16 also provides excellent information for teaching. Astrid Sigel, Helmut Sigel, and Roland K. O. Sigel have long-standing interests in Biological Inorganic Chemistry. Their research focuses on metal ion interactions with nucleotides and nucleic acids and on related topics. They edited previously 44 volumes in the series Metal Ions in Biological Systems.




Endocrinology


Book Description

Traditionally, endocrinology textbooks have been either short notes or multi-author, multi-volume monster, all of which present clinical material last and often only briefly. Endocrinology is different and used real cases to lead readers into the text and then describes the biochemistry, physiology, and anatomy they need to understand the case. The




Sodium in Health and Disease


Book Description

report on the latest developments in the field with new information in basic as well as in clinical sciences, Sodium in Health Diseases, covers both the physiology of sodium balance and how it relates to disease. Expertly written, its concise text examines ATPase, transport and receptor systems, and sodium balance as it relates to sex hormon




Mucus Hypersecretion in Respiratory Disease


Book Description

A number of chronic respiratory diseases including chronic bronchitis, asthma, cystic fibrosis and bronchiectasis are characterized by mucus hypersecretion. Following damage to the airway epithelium, a repair process of dedifferentiation, regenerative proliferation and redifferentiation takes place that is invariably accompanied by mucus hypersecretion as a key element in the host defence mechanism. In chronic respiratory diseases, however, excessive mucus production leads to a pathological state with increased risk of infection, hospitalization and morbidity. An understanding of the mechanisms that underlie and maintain this hypersecretory phenotype is therefore crucial for the development of rational approaches to therapy. Despite a high and increasing prevalence and cost to healthcare services and society, mucus hypersecretion in chronic respiratory disease has received little attention until recently, probably because of the difficulties inherent in studying this pathology. Only in the last few years have some of the genes involved in mucus secretion been characterized. The recent availability of genomic sequence information and specific antibodies has led to an explosion of interest in this area making this publication particularly timely. This book draws together contributions from an international and interdisciplinary group of experts, whose work is focused on both basic and clinical aspects of the problem. Coverage includes epidemiology, airways infection and mucus hypersecretion, the genetics and regulation of mucus production, models of mucus hypersecretion, and the implications of new knowledge for the development of novel therapies.




Anatomy and Physiology


Book Description