The Barley Genome


Book Description

This book presents an overview of the state-of-the-art in barley genome analysis, covering all aspects of sequencing the genome and translating this important information into new knowledge in basic and applied crop plant biology and new tools for research and crop improvement. Unlimited access to a high-quality reference sequence is removing one of the major constraints in basic and applied research. This book summarizes the advanced knowledge of the composition of the barley genome, its genes and the much larger non-coding part of the genome, and how this information facilitates studying the specific characteristics of barley. One of the oldest domesticated crops, barley is the small grain cereal species that is best adapted to the highest altitudes and latitudes, and it exhibits the greatest tolerance to most abiotic stresses. With comprehensive access to the genome sequence, barley’s importance as a genetic model in comparative studies on crop species like wheat, rye, oats and even rice is likely to increase.




The Sorghum Genome


Book Description

This book provides insights into the current state of sorghum genomics. It particularly focuses on the tools and strategies employed in genome sequencing and analysis, public and private genomic resources and how all this information is leading to direct outcomes for plant breeders. The advent of affordable whole genome sequencing in combination with existing cereal functional genomics data has enabled the leveraging of the significant novel diversity available in sorghum, the genome of which was fully sequenced in 2009, providing an unmatched resource for the genetic improvement of sorghum and other grass species. Cultivated grain sorghum is a food and feed cereal crop adapted to hot and dry climates, and is a staple for 500 million of the world’s poorest people. Globally, sorghum is also an important source of animal feed and forage, an emerging biofuel crop and model for C4 grasses, particularly genetically complex sugarcane.




The Sorghum Genome


Book Description

This book provides insights into the current state of sorghum genomics. It particularly focuses on the tools and strategies employed in genome sequencing and analysis, public and private genomic resources and how all this information is leading to direct outcomes for plant breeders. The advent of affordable whole genome sequencing in combination with existing cereal functional genomics data has enabled the leveraging of the significant novel diversity available in sorghum, the genome of which was fully sequenced in 2009, providing an unmatched resource for the genetic improvement of sorghum and other grass species. Cultivated grain sorghum is a food and feed cereal crop adapted to hot and dry climates, and is a staple for 500 million of the world’s poorest people. Globally, sorghum is also an important source of animal feed and forage, an emerging biofuel crop and model for C4 grasses, particularly genetically complex sugarcane.




The Rye Genome


Book Description

This book celebrates the dawn of the rye genomics era with concise, comprehensive, and accessible reviews on the current state of rye genomic research, written by experts in the field for students, researchers and growers. To most, rye is the key ingredient in a flavoursome bread or their favourite American whisky. To a farmer, rye is the remarkable grain that tolerates the harshest winters and the most unforgiving soils, befitting its legacy as the life-giving seed that fed the ancient civilisations of northern Eurasia. Since the mid-1900s, scientists have employed genetic approaches to better understand and utilize rye, but only since the technological advances of the mid-2010s has the possibility of addressing questions using rye genome assemblies become a reality. Alongside the secret of its unique survival abilities, rye genomics has accelerated research on a host of intriguing topics such as the complex history of rye’s domestication by humans, the nature of genes that switch fertility on and off, the function and origin of accessory chromosomes, and the evolution of selfish DNA.




Molecular Dissection of Complex Traits


Book Description

In the past 10 years, contemporary geneticists using new molecular tools have been able to resolve complex traits into individual genetic components and describe each such component in detail. Molecular Dissection of Complex Traits summarizes the state of the art in molecular analysis of complex traits (QTL mapping), placing new developments in thi




Plant Genomes


Book Description

Recent major advances in the field of comparative genomics and cytogenomics of plants, particularly associated with the completion of ambitious genome projects, have uncovered astonishing facets of the architecture and evolutionary history of plant genomes. The aim of this book was to review these recent developments as well as their implications in our understanding of the mechanisms which drive plant diversity. New insights into the evolution of gene functions, gene families and genome size are presented, with particular emphasis on the evolutionary impact of polyploidization and transposable elements. Knowledge on the structure and evolution of plant sex chromosomes, centromeres and microRNAs is reviewed and updated. Taken together, the contributions by internationally recognized experts present a panoramic overview of the structural features and evolutionary dynamics of plant genomes.This volume of Genome Dynamics will provide researchers, teachers and students in the fields of biology and agronomy with a valuable source of current knowledge on plant genomes.




The Soybean Genome


Book Description

This book examines the application of soybean genome sequences to comparative, structural, and functional genomics. Since the availability of the soybean genome sequence has revolutionized molecular research on this important crop species, the book also describes how the genome sequence has shaped research on transposon biology and applications for gene identification, tilling and positional gene cloning. Further, the book shows how the genome sequence influences research in the areas of genetic mapping, marker development, and genome-wide association mapping for identifying important trait genes and soybean breeding. In closing, the economic and botanical aspects of the soybean are also addressed.




Weedy and Invasive Plant Genomics


Book Description

Weedy and Invasive Plant Genomics offers a comprehensive, up-to-date reference on genetic and genomics research in weedy and invasive plants. Forward-looking in its approach, the work also assesses the areas of future research necessary to defeat these agricultural pests. This research-based, scholarly work engenders a further understanding of weeds and invasive plants, opening avenues for developing more effective methods of managing them. This volume will be a necessary reference for weed scientists, agrochemical industry researchers, conservation geneticist, and plant biologists.




The Tomato Genome


Book Description

This book describes the strategy used for sequencing, assembling and annotating the tomato genome and presents the main characteristics of this sequence with a special focus on repeated sequences and the ancestral polyploidy events. It also includes the chloroplast and mitochondrial genomes. Tomato (Solanum lycopersicum) is a major crop plant as well as a model for fruit development, and the availability of the genome sequence has completely changed the paradigm of the species’ genetics and genomics. The book describes the numerous genetic and genomic resources available, the identified genes and quantitative trait locus (QTL) identified, as well as the strong synteny across Solanaceae species. Lastly, it discusses the consequences of the availability of a high-quality genome sequence of the cultivated species for the research community. It is a valuable resource for students and researchers interested in the genetics and genomics of tomato and Solanaceae.




Genetics, Genomics and Breeding of Sorghum


Book Description

Sorghum is one of the hardiest crop plants in modern agriculture and also one of the most versatile. Its seeds provide calorie for food and feed, stalks for building and industrial materials and its juice for syrup. This book provides an in-depth review of the cutting-edge knowledge in sorghum genetics and its applications in sorghum breeding. Each chapter is authored by specialists in their fields to report the latest trends and findings. The book showcases the definitive value of sorghum as a model system to study the genetic basis of crop productivity and stress tolerance and will provide a foundation for future studies in sorghum genetics, genomics, and breeding.