The Statistical Analysis of Failure Time Data


Book Description

Contains additional discussion and examples on left truncationas well as material on more general censoring and truncationpatterns. Introduces the martingale and counting process formulation swillbe in a new chapter. Develops multivariate failure time data in a separate chapterand extends the material on Markov and semi Markovformulations. Presents new examples and applications of data analysis.




The Statistical Analysis of Failure Time Data


Book Description

Failure time models; Inference in parametric models and related topics; The proportional hazards model; Likelihood construction and further results on the proportional hazards model; Inference based on ranks in the accelerated failure time model; Multivariate failure time data and competing risks; Miscellaneous topics.




The Statistical Analysis of Interval-censored Failure Time Data


Book Description

This book collects and unifies statistical models and methods that have been proposed for analyzing interval-censored failure time data. It provides the first comprehensive coverage of the topic of interval-censored data and complements the books on right-censored data. The focus of the book is on nonparametric and semiparametric inferences, but it also describes parametric and imputation approaches. This book provides an up-to-date reference for people who are conducting research on the analysis of interval-censored failure time data as well as for those who need to analyze interval-censored data to answer substantive questions.




The Statistical Analysis of Failure Time Data


Book Description

* Contains additional discussion and examples on left truncation as well as material on more general censoring and truncation patterns. * Introduces the martingale and counting process formulation swil lbe in a new chapter. * Develops multivariate failure time data in a separate chapter and extends the material on Markov and semi Markov formulations. * Presents new examples and applications of data analysis.




Analysis of Failure and Survival Data


Book Description

Analysis of Failure and Survival Data is an essential textbook for graduate-level students of survival analysis and reliability and a valuable reference for practitioners. It focuses on the many techniques that appear in popular software packages, including plotting product-limit survival curves, hazard plots, and probability plots in the context of censored data. The author integrates S-Plus and Minitab output throughout the text, along with a variety of real data sets so readers can see how the theory and methods are applied. He also incorporates exercises in each chapter that provide valuable problem-solving experience. In addition to all of this, the book also brings to light the most recent linear regression techniques. Most importantly, it includes a definitive account of the Buckley-James method for censored linear regression, found to be the best performing method when a Cox proportional hazards method is not appropriate. Applying the theories of survival analysis and reliability requires more background and experience than students typically receive at the undergraduate level. Mastering the contents of this book will help prepare students to begin performing research in survival analysis and reliability and provide seasoned practitioners with a deeper understanding of the field.




Modeling Discrete Time-to-Event Data


Book Description

This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are explained. Each section includes a set of exercises on the respective topics. Various functions and tools for the analysis of discrete survival data are collected in the R package discSurv that accompanies the book.




Accelerated Life Models


Book Description

The authors of this monograph have developed a large and important class of survival analysis models that generalize most of the existing models. In a unified, systematic presentation, this monograph fully details those models and explores areas of accelerated life testing usually only touched upon in the literature. Accelerated Life Models:




Statistical Models and Methods for Lifetime Data


Book Description

Praise for the First Edition "An indispensable addition to any serious collection on lifetime data analysis and . . . a valuable contribution to the statistical literature. Highly recommended . . ." -Choice "This is an important book, which will appeal to statisticians working on survival analysis problems." -Biometrics "A thorough, unified treatment of statistical models and methods used in the analysis of lifetime data . . . this is a highly competent and agreeable statistical textbook." -Statistics in Medicine The statistical analysis of lifetime or response time data is a key tool in engineering, medicine, and many other scientific and technological areas. This book provides a unified treatment of the models and statistical methods used to analyze lifetime data. Equally useful as a reference for individuals interested in the analysis of lifetime data and as a text for advanced students, Statistical Models and Methods for Lifetime Data, Second Edition provides broad coverage of the area without concentrating on any single field of application. Extensive illustrations and examples drawn from engineering and the biomedical sciences provide readers with a clear understanding of key concepts. New and expanded coverage in this edition includes: * Observation schemes for lifetime data * Multiple failure modes * Counting process-martingale tools * Both special lifetime data and general optimization software * Mixture models * Treatment of interval-censored and truncated data * Multivariate lifetimes and event history models * Resampling and simulation methodology




Event History Analysis with R


Book Description

With an emphasis on social science applications, Event History Analysis with R presents an introduction to survival and event history analysis using real-life examples. Keeping mathematical details to a minimum, the book covers key topics, including both discrete and continuous time data, parametric proportional hazards, and accelerated failure times. Features Introduces parametric proportional hazards models with baseline distributions like the Weibull, Gompertz, Lognormal, and Piecewise constant hazard distributions, in addition to traditional Cox regression Presents mathematical details as well as technical material in an appendix Includes real examples with applications in demography, econometrics, and epidemiology Provides a dedicated R package, eha, containing special treatments, including making cuts in the Lexis diagram, creating communal covariates, and creating period statistics A much-needed primer, Event History Analysis with R is a didactically excellent resource for students and practitioners of applied event history and survival analysis.




Statistical Methods for Reliability Data


Book Description

An authoritative guide to the most recent advances in statistical methods for quantifying reliability Statistical Methods for Reliability Data, Second Edition (SMRD2) is an essential guide to the most widely used and recently developed statistical methods for reliability data analysis and reliability test planning. Written by three experts in the area, SMRD2 updates and extends the long- established statistical techniques and shows how to apply powerful graphical, numerical, and simulation-based methods to a range of applications in reliability. SMRD2 is a comprehensive resource that describes maximum likelihood and Bayesian methods for solving practical problems that arise in product reliability and similar areas of application. SMRD2 illustrates methods with numerous applications and all the data sets are available on the book’s website. Also, SMRD2 contains an extensive collection of exercises that will enhance its use as a course textbook. The SMRD2's website contains valuable resources, including R packages, Stan model codes, presentation slides, technical notes, information about commercial software for reliability data analysis, and csv files for the 93 data sets used in the book's examples and exercises. The importance of statistical methods in the area of engineering reliability continues to grow and SMRD2 offers an updated guide for, exploring, modeling, and drawing conclusions from reliability data. SMRD2 features: Contains a wealth of information on modern methods and techniques for reliability data analysis Offers discussions on the practical problem-solving power of various Bayesian inference methods Provides examples of Bayesian data analysis performed using the R interface to the Stan system based on Stan models that are available on the book's website Includes helpful technical-problem and data-analysis exercise sets at the end of every chapter Presents illustrative computer graphics that highlight data, results of analyses, and technical concepts Written for engineers and statisticians in industry and academia, Statistical Methods for Reliability Data, Second Edition offers an authoritative guide to this important topic.