Inequivalent Representations of Canonical Commutation and Anti-Commutation Relations


Book Description

Canonical commutation relations (CCR) and canonical anti-commutation relations (CAR) are basic principles in quantum physics including both quantum mechanics with finite degrees of freedom and quantum field theory. From a structural viewpoint, quantum physics can be primarily understood as Hilbert space representations of CCR or CAR. There are many interesting physical phenomena which can be more clearly understood from a representation–theoretical viewpoint with CCR or CAR. This book provides an introduction to representation theories of CCR and CAR in view of quantum physics. Particular emphases are put on the importance of inequivalent representations of CCR or CAR, which may be related to characteristic physical phenomena. The topics presented include general theories of representations of CCR and CAR with finite and infinite degrees of freedom, the Aharonov–Bohm effect, time operators, quantum field theories based on Fock spaces, Bogoliubov transformations, and relations of infinite renormalizations with inequivalent representations of CCR. This book can be used as a text for an advanced topics course in mathematical physics or mathematics.




The Structure and Interpretation of the Standard Model


Book Description

This book provides a philosophically informed and mathematically rigorous introduction to the 'standard model' of particle physics. The standard model is the currently accepted and experimentally verified model of all the particles and interactions in our universe. All the elementary particles in our universe, and all the non-gravitational interactions -the strong nuclear force, the weak nuclear force, and the electromagnetic force - are collected together and, in the case of the weak and electromagnetic forces, unified in the standard model. Rather than presenting the calculational recipes favored in most treatments of the standard model, this text focuses upon the elegant mathematical structures and the foundational concepts of the standard model.· Combines an exposition of the philosophical foundations and rigorous mathematical structure of particle physics· Demonstrates the standard model with elegant mathematics, rather than a medley of computational recipes· Promotes a group-theoretical and fibre-bundle approach to the standard model, rather than the Lagrangian approach favoured by calculationalists· Explains the different approaches to particle physics and the standard model which can be found within the literature




Commuting Elements In Q-deformed Heisenberg Algebras


Book Description

Noncommutative algebras, rings and other noncommutative objects, along with their more classical commutative counterparts, have become a key part of modern mathematics, physics and many other fields. The q-deformed Heisenberg algebras defined by deformed Heisenberg canonical commutation relations of quantum mechanics play a distinguished role as important objects in pure mathematics and in many applications in physics. The structure of commuting elements in an algebra is of fundamental importance for its structure and representation theory as well as for its applications. The main objects studied in this monograph are q-deformed Heisenberg algebras — more specifically, commuting elements in q-deformed Heisenberg algebras.In this book the structure of commuting elements in q-deformed Heisenberg algebras is studied in a systematic way. Many new results are presented with complete proofs. Several appendices with some general theory used in other parts of the book include material on the Diamond lemma for ring theory, a theory of degree functions in arbitrary associative algebras, and some basic facts about q-combinatorial functions over an arbitrary field. The bibliography contains, in addition to references on q-deformed Heisenberg algebras, some selected references on related subjects and on existing and potential applications.The book is self-contained, as far as proofs and the background material are concerned. In addition to research and reference purposes, it can be used in a special course or a series of lectures on the subject or as complementary material to a general course on algebra. Specialists as well as doctoral and advanced undergraduate students in mathematics and physics will find this book useful in their research and study.




An Introduction to Lie Groups and Lie Algebras


Book Description

This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.




Quantum Theory, Groups and Representations


Book Description

This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.




Operators and Representation Theory


Book Description

Three-part treatment covers background material on definitions, terminology, operators in Hilbert space domains of representations, operators in the enveloping algebra, spectral theory; and covariant representation and connections. 2017 edition.







Collected Papers Vol.1: Quantum Field Theory and Statistical Mechanics


Book Description

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 Critical point dominance in quantum field models. . . . . . . . . . . . . . . . . . . . 326 q>,' quantum field model in the single-phase regions: Differentiability of the mass and bounds on critical exponents. . . . 341 Remark on the existence of q>:. . . • . . . . • . . . . • . . . . . . . . • . • . . . . . . . . . . • . 345 On the approach to the critical point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 Critical exponents and elementary particles. . . . . . . . . . . . . . . . . . . . . . . . . . 362 V Particle Structure Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 The entropy principle for vertex functions in quantum field models. . . . . 372 Three-particle structure of q>4 interactions and the scaling limit . . . . . . . . . 397 Two and three body equations in quantum field models. . . . . . . . . . . . . . . 409 Particles and scaling for lattice fields and Ising models. . . . . . . . . . . . . . . . 437 The resummation of one particle lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 VI Bounds on Coupling Constants Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 Absolute bounds on vertices and couplings. . . . . . . . . . . . . . . . . . . . . . . . . . 480 The coupling constant in a q>4 field theory. . . . . . . . . . . . . . . . . . . . . . . . . . . 491 VII Confinement and Instantons Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Instantons in a U(I) lattice gauge theory: A coulomb dipole gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 Charges, vortices and confinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516 ix VIII Reflection Positivity Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 A note on reflection positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 x Introduction This volume contains a selection of expository articles on quantum field theory and statistical mechanics by James Glimm and Arthur Jaffe. They include a solution of the original interacting quantum field equations and a description of the physics which these equations contain. Quantum fields were proposed in the late 1920s as the natural framework which combines quantum theory with relativ ity. They have survived ever since.




Quantum and Stochastic Mathematical Physics


Book Description

Sergio Albeverio gave important contributions to many fields ranging from Physics to Mathematics, while creating new research areas from their interplay. Some of them are presented in this Volume that grew out of the Random Transformations and Invariance in Stochastic Dynamics Workshop held in Verona in 2019. To understand the theory of thermo- and fluid-dynamics, statistical mechanics, quantum mechanics and quantum field theory, Albeverio and his collaborators developed stochastic theories having strong interplays with operator theory and functional analysis. His contribution to the theory of (non Gaussian)-SPDEs, the related theory of (pseudo-)differential operators, and ergodic theory had several impacts to solve problems related, among other topics, to thermo- and fluid dynamics. His scientific works in the theory of interacting particles and its extension to configuration spaces lead, e.g., to the solution of open problems in statistical mechanics and quantum field theory. Together with Raphael Hoegh Krohn he introduced the theory of infinite dimensional Dirichlet forms, which nowadays is used in many different contexts, and new methods in the theory of Feynman path integration. He did not fear to further develop different methods in Mathematics, like, e.g., the theory of non-standard analysis and p-adic numbers.