The Structure of Spherical Buildings


Book Description

This book provides a clear and authoritative introduction to the theory of buildings, a topic of central importance to mathematicians interested in the geometric aspects of group theory. Its detailed presentation makes it suitable for graduate students as well as specialists. Richard Weiss begins with an introduction to Coxeter groups and goes on to present basic properties of arbitrary buildings before specializing to the spherical case. Buildings are described throughout in the language of graph theory. The Structure of Spherical Buildings includes a reworking of the proof of Jacques Tits's Theorem 4.1.2. upon which Tits's classification of thick irreducible spherical buildings of rank at least three is based. In fact, this is the first book to include a proof of this famous result since its original publication. Theorem 4.1.2 is followed by a systematic study of the structure of spherical buildings and their automorphism groups based on the Moufang property. Moufang buildings of rank two were recently classified by Tits and Weiss. The last chapter provides an overview of the classification of spherical buildings, one that reflects these and other important developments.




The Structure of Spherical Buildings


Book Description

This book provides a clear and authoritative introduction to the theory of buildings, a topic of central importance to mathematicians interested in the geometric aspects of group theory. Its detailed presentation makes it suitable for graduate students as well as specialists. Richard Weiss begins with an introduction to Coxeter groups and goes on to present basic properties of arbitrary buildings before specializing to the spherical case. Buildings are described throughout in the language of graph theory. The Structure of Spherical Buildings includes a reworking of the proof of Jacques Tits's Theorem 4.1.2. upon which Tits's classification of thick irreducible spherical buildings of rank at least three is based. In fact, this is the first book to include a proof of this famous result since its original publication. Theorem 4.1.2 is followed by a systematic study of the structure of spherical buildings and their automorphism groups based on the Moufang property. Moufang buildings of rank two were recently classified by Tits and Weiss. The last chapter provides an overview of the classification of spherical buildings, one that reflects these and other important developments.




Buildings of Spherical Type and Finite BN-Pairs


Book Description

These notes are a slightly revised and extended version of mim- graphed notes written on the occasion of a seminar on buildings and BN-pairs held at Oberwolfach in April 1968. Their main purpose is to present the solution of the following two problems: (A) Determination of the buildings of rank >; and irreducible, spherical type, other than ~ and H ("of spherical type" means "with finite Weyl 4 group", about the excluded types H, cf. the addenda on p. 274). Roughly speaking, those buildings all turn out to be associated to simple algebraic or classical groups (cf. 6. ;, 6. 1;, 8. 4. ;, 8. 22, 9. 1, 10. 2). An easy application provides the enumeration of all finite groups with BN-pairs of irreducible type and rank >;, up to normal subgroups contained in B (cf. 11. 7). (B) Determination of all isomorphisms between buildings of rank > 2 and spherical type associated to algebraic or classical simple groups and, in parti cular, description of the full automorphism groups of such buildings (cf. 5. 8, 5. 9, 5. 10, 6. 6, 6. 1;, 8. 6, 9. ;, 10. 4). Except for the appendices, the notes are rather strictly oriented - ward these goals.




The Structure of Affine Buildings. (AM-168)


Book Description

Richard Weiss gives a detailed presentation of the complete proof of the classification of Bruhat-Tits buildings first completed by Jacques Tits in 1986. The book includes numerous results about automorphisms, completions and residues of these buildings.




Buildings and Classical Groups


Book Description

Buildings are highly structured, geometric objects, primarily used in the finer study of the groups that act upon them. In Buildings and Classical Groups, the author develops the basic theory of buildings and BN-pairs, with a focus on the results needed to apply it to the representation theory of p-adic groups. In particular, he addresses spherical and affine buildings, and the "spherical building at infinity" attached to an affine building. He also covers in detail many otherwise apocryphal results. Classical matrix groups play a prominent role in this study, not only as vehicles to illustrate general results but as primary objects of interest. The author introduces and completely develops terminology and results relevant to classical groups. He also emphasizes the importance of the reflection, or Coxeter groups and develops from scratch everything about reflection groups needed for this study of buildings. In addressing the more elementary spherical constructions, the background pertaining to classical groups includes basic results about quadratic forms, alternating forms, and hermitian forms on vector spaces, plus a description of parabolic subgroups as stabilizers of flags of subspaces. The text then moves on to a detailed study of the subtler, less commonly treated affine case, where the background concerns p-adic numbers, more general discrete valuation rings, and lattices in vector spaces over ultrametric fields. Buildings and Classical Groups provides essential background material for specialists in several fields, particularly mathematicians interested in automorphic forms, representation theory, p-adic groups, number theory, algebraic groups, and Lie theory. No other available source provides such a complete and detailed treatment.




Buildings


Book Description

For years I have heard about buildings and their applications to group theory. I finally decided to try to learn something about the subject by teaching a graduate course on it at Cornell University in Spring 1987. This book is based on the not es from that course. The course started from scratch and proceeded at a leisurely pace. The book therefore does not get very far. Indeed, the definition of the term "building" doesn't even appear until Chapter IV. My hope, however, is that the book gets far enough to enable the reader to tadle the literat ure on buildings, some of which can seem very forbidding. Most of the results in this book are due to J. Tits, who originated the the ory of buildings. The main exceptions are Chapter I (which presents some classical material), Chapter VI (which prcsents joint work of F. Bruhat and Tits), and Chapter VII (which surveys some applications, due to var ious people). It has been a pleasure studying Tits's work; I only hope my exposition does it justice.




Lectures on Buildings


Book Description

In mathematics, “buildings” are geometric structures that represent groups of Lie type over an arbitrary field. This concept is critical to physicists and mathematicians working in discrete mathematics, simple groups, and algebraic group theory, to name just a few areas. Almost twenty years after its original publication, Mark Ronan’s Lectures on Buildings remains one of the best introductory texts on the subject. A thorough, concise introduction to mathematical buildings, it contains problem sets and an excellent bibliography that will prove invaluable to students new to the field. Lectures on Buildings will find a grateful audience among those doing research or teaching courses on Lie-type groups, on finite groups, or on discrete groups. “Ronan’s account of the classification of affine buildings [is] both interesting and stimulating, and his book is highly recommended to those who already have some knowledge and enthusiasm for the theory of buildings.”—Bulletin of the London Mathematical Society




Finiteness Properties of Arithmetic Groups Acting on Twin Buildings


Book Description

Providing an accessible approach to a special case of the Rank Theorem, the present text considers the exact finiteness properties of S-arithmetic subgroups of split reductive groups in positive characteristic when S contains only two places. While the proof of the general Rank Theorem uses an involved reduction theory due to Harder, by imposing the restrictions that the group is split and that S has only two places, one can instead make use of the theory of twin buildings.




Experimental Vibration Analysis for Civil Structures


Book Description

Experimental Vibration Analysis for Civil Structures: Testing, Sensing, Monitoring, and Control covers a wide range of topics in the areas of vibration testing, instrumentation, and analysis of civil engineering and critical infrastructure. It explains how recent research, development, and applications in experimental vibration analysis of civil engineering structures have progressed significantly due to advancements in the fields of sensor and testing technologies, instrumentation, data acquisition systems, computer technology, computational modeling and simulation of large and complex civil infrastructure systems. The book also examines how cutting-edge artificial intelligence and data analytics can be applied to infrastructure systems. Features: Explains how recent technological developments have resulted in addressing the challenge of designing more resilient infrastructure Examines numerous research studies conducted by leading scholars in the field of infrastructure systems and civil engineering Presents the most emergent fields of civil engineering design, such as data analytics and Artificial Intelligence for the analysis and performance assessment of infrastructure systems and their resilience Emphasizes the importance of an interdisciplinary approach to develop the modeling, analysis, and experimental tools for designing more resilient and intelligent infrastructures Appropriate for practicing engineers and upper-level students, Experimental Vibration Analysis for Civil Structures: Testing, Sensing, Monitoring, and Control serves as a strategic roadmap for further research in the field of vibration testing and instrumentation of infrastructure systems.




Tits Buildings and the Model Theory of Groups


Book Description

Introduction to buildings and their geometries with emphasis on model theoretic constructions, covering recent developments.