The Structure of Typed Programming Languages


Book Description

The text is unique in its tutorial presentation of higher-order lambda calculus and intuitionistic type theory.




The Structure of Typed Programming Languages


Book Description

The Structure of Typed Programming Languages describes the fundamental syntactic and semantic features of modern programming languages, carefully spelling out their impacts on language design. Using classical and recent research from lambda calculus and type theory, it presents a rational reconstruction of the Algol-like imperative languages such as Pascal, Ada, and Modula-3, and the higher-order functional languages such as Scheme and ML.David Schmidt's text is based on the premise that although few programmers ever actually design a programming language, it is important for them to understand the structuring techniques. His use of these techniques in a reconstruction of existing programming languages and in the design of new ones allows programmers and would-be programmers to see why existing languages are structured the way they are and how new languages can be built using variations on standard themes.The text is unique in its tutorial presentation of higher-order lambda calculus and intuitionistic type theory. The latter in particular reveals that a programming language is a logic in which its typing system defines the propositions of the logic and its well-typed programs constitute the proofs of the propositions.The Structure of Typed Programming Languages is designed for use in a first or second course on principles of programming languages. It assumes a basic knowledge of programming languages and mathematics equivalent to a course based on books such as Friedman, Wand, and Haynes': Essentials of Programming Languages. As Schmidt covers both the syntax and the semantics of programming languages, his text provides a perfect precursor to a more formal presentation of programming language semantics such as Gunter's Semantics of Programming Languages.




Expert C Programming


Book Description

Software -- Programming Languages.




Types and Programming Languages


Book Description

A comprehensive introduction to type systems and programming languages. A type system is a syntactic method for automatically checking the absence of certain erroneous behaviors by classifying program phrases according to the kinds of values they compute. The study of type systems—and of programming languages from a type-theoretic perspective—has important applications in software engineering, language design, high-performance compilers, and security. This text provides a comprehensive introduction both to type systems in computer science and to the basic theory of programming languages. The approach is pragmatic and operational; each new concept is motivated by programming examples and the more theoretical sections are driven by the needs of implementations. Each chapter is accompanied by numerous exercises and solutions, as well as a running implementation, available via the Web. Dependencies between chapters are explicitly identified, allowing readers to choose a variety of paths through the material. The core topics include the untyped lambda-calculus, simple type systems, type reconstruction, universal and existential polymorphism, subtyping, bounded quantification, recursive types, kinds, and type operators. Extended case studies develop a variety of approaches to modeling the features of object-oriented languages.




The Little Typer


Book Description

An introduction to dependent types, demonstrating the most beautiful aspects, one step at a time. A program's type describes its behavior. Dependent types are a first-class part of a language, and are much more powerful than other kinds of types; using just one language for types and programs allows program descriptions to be as powerful as the programs they describe. The Little Typer explains dependent types, beginning with a very small language that looks very much like Scheme and extending it to cover both programming with dependent types and using dependent types for mathematical reasoning. Readers should be familiar with the basics of a Lisp-like programming language, as presented in the first four chapters of The Little Schemer. The first five chapters of The Little Typer provide the needed tools to understand dependent types; the remaining chapters use these tools to build a bridge between mathematics and programming. Readers will learn that tools they know from programming—pairs, lists, functions, and recursion—can also capture patterns of reasoning. The Little Typer does not attempt to teach either practical programming skills or a fully rigorous approach to types. Instead, it demonstrates the most beautiful aspects as simply as possible, one step at a time.




Semantics of Programming Languages


Book Description

Semantics of Programming Languages exposes the basic motivations and philosophy underlying the applications of semantic techniques in computer science. It introduces the mathematical theory of programming languages with an emphasis on higher-order functions and type systems. Designed as a text for upper-level and graduate-level students, the mathematically sophisticated approach will also prove useful to professionals who want an easily referenced description of fundamental results and calculi. Basic connections between computational behavior, denotational semantics, and the equational logic of functional programs are thoroughly and rigorously developed. Topics covered include models of types, operational semantics, category theory, domain theory, fixed point (denotational). semantics, full abstraction and other semantic correspondence criteria, types and evaluation, type checking and inference, parametric polymorphism, and subtyping. All topics are treated clearly and in depth, with complete proofs for the major results and numerous exercises.




The Formal Semantics of Programming Languages


Book Description

The Formal Semantics of Programming Languages provides the basic mathematical techniques necessary for those who are beginning a study of the semantics and logics of programming languages. These techniques will allow students to invent, formalize, and justify rules with which to reason about a variety of programming languages. Although the treatment is elementary, several of the topics covered are drawn from recent research, including the vital area of concurency. The book contains many exercises ranging from simple to miniprojects.Starting with basic set theory, structural operational semantics is introduced as a way to define the meaning of programming languages along with associated proof techniques. Denotational and axiomatic semantics are illustrated on a simple language of while-programs, and fall proofs are given of the equivalence of the operational and denotational semantics and soundness and relative completeness of the axiomatic semantics. A proof of Godel's incompleteness theorem, which emphasizes the impossibility of achieving a fully complete axiomatic semantics, is included. It is supported by an appendix providing an introduction to the theory of computability based on while-programs. Following a presentation of domain theory, the semantics and methods of proof for several functional languages are treated. The simplest language is that of recursion equations with both call-by-value and call-by-name evaluation. This work is extended to lan guages with higher and recursive types, including a treatment of the eager and lazy lambda-calculi. Throughout, the relationship between denotational and operational semantics is stressed, and the proofs of the correspondence between the operation and denotational semantics are provided. The treatment of recursive types - one of the more advanced parts of the book - relies on the use of information systems to represent domains. The book concludes with a chapter on parallel programming languages, accompanied by a discussion of methods for specifying and verifying nondeterministic and parallel programs.




Practical Foundations for Programming Languages


Book Description

This book unifies a broad range of programming language concepts under the framework of type systems and structural operational semantics.




Essentials of Programming Languages


Book Description

This textbook offers an understanding of the essential concepts of programming languages. The text uses interpreters, written in Scheme, to express the semantics of many essential language elements in a way that is both clear and directly executable.




Concepts in Programming Languages


Book Description

A comprehensive undergraduate textbook covering both theory and practical design issues, with an emphasis on object-oriented languages.