The Unprovability of Consistency


Book Description

The Unprovability of Consistency is concerned with connections between two branches of logic: proof theory and modal logic. Modal logic is the study of the principles that govern the concepts of necessity and possibility; proof theory is, in part, the study of those that govern provability and consistency. In this book, George Boolos looks at the principles of provability from the standpoint of modal logic. In doing so, he provides two perspectives on a debate in modal logic that has persisted for at least thirty years between the followers of C. I. Lewis and W. V. O. Quine. The author employs semantic methods developed by Saul Kripke in his analysis of modal logical systems. The book will be of interest to advanced undergraduate and graduate students in logic, mathematics and philosophy, as well as to specialists in those fields.




Formal Theories of Truth


Book Description

Truth is one of the oldest and most central topics in philosophy. Formal theories explore the connections between truth and logic, and they address truth-theoretic paradoxes such as the Liar. Three leading philosopher-logicians now present a concise overview of the main issues and ideas in formal theories of truth. Beall, Glanzberg, and Ripley explain key logical techniques on which such formal theories rely, providing the formal and logical background needed to develop formal theories of truth. They examine the most important truth-theoretic paradoxes, including the Liar paradoxes. They explore approaches that keep principles of truth simple while relying on nonclassical logic; approaches that preserve classical logic but do so by complicating the principles of truth; and approaches based on substructural logics that change the shape of the target consequence relation itself. Finally, inconsistency and revision theories are reviewed, and contrasted with the approaches previously discussed. For any reader who has a basic grounding in logic, this book offers an ideal guide to formal theories of truth.




The Logic of Provability


Book Description

Boolos, a pre-eminent philosopher of mathematics, investigates the relationship between provability and modal logic.




An Introduction to Gödel's Theorems


Book Description

In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the Second Theorem, and exploring a family of related results (including some not easily available elsewhere). The formal explanations are interwoven with discussions of the wider significance of the two Theorems. This book will be accessible to philosophy students with a limited formal background. It is equally suitable for mathematics students taking a first course in mathematical logic.




Incompleteness


Book Description

"An introduction to the life and thought of Kurt Gödel, who transformed our conception of math forever"--Provided by publisher.




Computability and Logic


Book Description

This fifth edition of 'Computability and Logic' covers not just the staple topics of an intermediate logic course such as Godel's incompleteness theorems, but also optional topics that include Turing's theory of computability and Ramsey's theorem.




On Formally Undecidable Propositions of Principia Mathematica and Related Systems


Book Description

First English translation of revolutionary paper (1931) that established that even in elementary parts of arithmetic, there are propositions which cannot be proved or disproved within the system. Introduction by R. B. Braithwaite.




Logic, Logic, and Logic


Book Description

George Boolos was one of the most prominent and influential logician-philosophers of recent times. This collection, nearly all chosen by Boolos himself shortly before his death, includes thirty papers on set theory, second-order logic, and plural quantifiers; on Frege, Dedekind, Cantor, and Russell; and on miscellaneous topics in logic and proof theory, including three papers on various aspects of the Gödel theorems. Boolos is universally recognized as the leader in the renewed interest in studies of Frege's work on logic and the philosophy of mathematics. John Burgess has provided introductions to each of the three parts of the volume, and also an afterword on Boolos's technical work in provability logic, which is beyond the scope of this volume.




Logics for Computer Science


Book Description

Providing an in-depth introduction to fundamental classical and non-classical logics, this textbook offers a comprehensive survey of logics for computer scientists. Logics for Computer Science contains intuitive introductory chapters explaining the need for logical investigations, motivations for different types of logics and some of their history. They are followed by strict formal approach chapters. All chapters contain many detailed examples explaining each of the introduced notions and definitions, well chosen sets of exercises with carefully written solutions, and sets of homework. While many logic books are available, they were written by logicians for logicians, not for computer scientists. They usually choose one particular way of presenting the material and use a specialized language. Logics for Computer Science discusses Gentzen as well as Hilbert formalizations, first order theories, the Hilbert Program, Godel's first and second incompleteness theorems and their proofs. It also introduces and discusses some many valued logics, modal logics and introduces algebraic models for classical, intuitionistic, and modal S4 and S5 logics. The theory of computation is based on concepts defined by logicians and mathematicians. Logic plays a fundamental role in computer science, and this book explains the basic theorems, as well as different techniques of proving them in classical and some non-classical logics. Important applications derived from concepts of logic for computer technology include Artificial Intelligence and Software Engineering. In addition to Computer Science, this book may also find an audience in mathematics and philosophy courses, and some of the chapters are also useful for a course in Artificial Intelligence.




Gödel's Theorem


Book Description

"Among the many expositions of Gödel's incompleteness theorems written for non-specialists, this book stands apart. With exceptional clarity, Franzén gives careful, non-technical explanations both of what those theorems say and, more importantly, what they do not. No other book aims, as his does, to address in detail the misunderstandings and abuses of the incompleteness theorems that are so rife in popular discussions of their significance. As an antidote to the many spurious appeals to incompleteness in theological, anti-mechanist and post-modernist debates, it is a valuable addition to the literature." --- John W. Dawson, author of Logical Dilemmas: The Life and Work of Kurt Gödel