Theory and Application of Digital Control


Book Description

Theory and Application of Digital Control contains the proceedings of the IFAC Symposium held at New Delhi, India on January 5-7, 1982. This book particularly presents the texts of the five plenary talks and the 110 papers of the symposium. This book organizes the papers into 109 chapters, with nearly one-third of the papers focus on digital control, particularly, software and hardware of control using microcomputers; computer-aided design; and adaptive control and modeling for digital control. Another set of papers deal with several applications of digital control techniques in solving interesting problems of socio economic systems, electrical power systems, bio systems, and artificial satellites. The reader will benefit hugely from the topics in this book that span several important theoretical and applied areas of the fast-changing topic of digital control.




Applied Digital Control


Book Description

Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.




Digital Control Engineering


Book Description

Digital controllers are part of nearly all modern personal, industrial, and transportation systems. Every senior or graduate student of electrical, chemical or mechanical engineering should therefore be familiar with the basic theory of digital controllers. This new text covers the fundamental principles and applications of digital control engineering, with emphasis on engineering design. Fadali and Visioli cover analysis and design of digitally controlled systems and describe applications of digital controls in a wide range of fields. With worked examples and Matlab applications in every chapter and many end-of-chapter assignments, this text provides both theory and practice for those coming to digital control engineering for the first time, whether as a student or practicing engineer. Extensive Use of computational tools: Matlab sections at end of each chapter show how to implement concepts from the chapter Frees the student from the drudgery of mundane calculations and allows him to consider more subtle aspects of control system analysis and design An engineering approach to digital controls: emphasis throughout the book is on design of control systems. Mathematics is used to help explain concepts, but throughout the text discussion is tied to design and implementation. For example coverage of analog controls in chapter 5 is not simply a review, but is used to show how analog control systems map to digital control systems Review of Background Material: contains review material to aid understanding of digital control analysis and design. Examples include discussion of discrete-time systems in time domain and frequency domain (reviewed from linear systems course) and root locus design in s-domain and z-domain (reviewed from feedback control course) Inclusion of Advanced Topics In addition to the basic topics required for a one semester senior/graduate class, the text includes some advanced material to make it suitable for an introductory graduate level class or for two quarters at the senior/graduate level. Examples of optional topics are state-space methods, which may receive brief coverage in a one semester course, and nonlinear discrete-time systems Minimal Mathematics Prerequisites The mathematics background required for understanding most of the book is based on what can be reasonably expected from the average electrical, chemical or mechanical engineering senior. This background includes three semesters of calculus, differential equations and basic linear algebra. Some texts on digital control require more




Direct Digital Control of Building Systems


Book Description

It emphasizes throughout the high performance, reliability, and reduced cost of modern digital sensors, control devices, microprocessors, computer memory, and other electronic components.




Microcontroller Based Applied Digital Control


Book Description

Combines the theory and the practice of applied digital control This book presents the theory and application of microcontroller based automatic control systems. Microcontrollers are single-chip computers which can be used to control real-time systems. Low-cost, single chip and easy to program, they have traditionally been programmed using the assembly language of the target processor. Recent developments in this field mean that it is now possible to program these devices using high-level languages such as BASIC, PASCAL, or C. As a result, very complex control algorithms can be developed and implemented on the microcontrollers. Presenting a detailed treatment of how microcontrollers can be programmed and used in digital control applications, this book: * Introduces the basic principles of the theory of digital control systems. * Provides several working examples of real working mechanical, electrical and fluid systems. * Covers the implementation of control algorithms using microcontrollers. * Examines the advantages and disadvantages of various realization techniques. * Describes the use of MATLAB in the analysis and design of control systems. * Explains the sampling process, z-transforms, and the time response of discrete-time systems in detail. Practising engineers in industry involved with the design and implementation of computer control systems will find Microcontroller Based Applied Digital Control an invaluable resource. In addition, researchers and students in control engineering and electrical engineering will find this book an excellent research tool.




Embedded Digital Control with Microcontrollers


Book Description

EMBEDDED DIGITAL CONTROL WITH MICROCONTROLLERS Explore a concise and practical introduction to implementation methods and the theory of digital control systems on microcontrollers Embedded Digital Control with Microcontrollers delivers expert instruction in digital control system implementation techniques on the widely used ARM Cortex-M microcontroller. The accomplished authors present the included information in three phases. First, they describe how to implement prototype digital control systems via the Python programming language in order to help the reader better understand theoretical digital control concepts. Second, the book offers readers direction on using the C programming language to implement digital control systems on actual microcontrollers. This will allow readers to solve real-life problems involving digital control, robotics, and mechatronics. Finally, readers will learn how to merge the theoretical and practical issues discussed in the book by implementing digital control systems in real-life applications. Throughout the book, the application of digital control systems using the Python programming language ensures the reader can apply the theory contained within. Readers will also benefit from the inclusion of: A thorough introduction to the hardware used in the book, including STM32 Nucleo Development Boards and motor drive expansion boards An exploration of the software used in the book, including Python, MicroPython, and Mbed Practical discussions of digital control basics, including discrete-time signals, discrete-time systems, linear and time-invariant systems, and constant coefficient difference equations An examination of how to represent a continuous-time system in digital form, including analog-to-digital conversion and digital-to-analog conversion Perfect for undergraduate students in electrical engineering, Embedded Digital Control with Microcontrollers will also earn a place in the libraries of professional engineers and hobbyists working on digital control and robotics systems seeking a one-stop reference for digital control systems on microcontrollers.







Digital Control Systems


Book Description

The great advances made in large-scale integration of semiconductors, the resulting cost-effective digital processors and data storage devi ces, and the development of suitable programming techniques are all having increasing influence on the techniques of measurement and con trol and on automation in general. The application of digital techni ques to process automation started in about 1960 when the first process computer was installed. From about 1970 computers have become standard equipment for the automation of industrial processes, connected on-line in open or closed loop. The annual increase of installed process compu ters in the last decade was about 20- 30 %. The cost of hardware has shown a tendency to decrease, whereas the relative cost of user soft ware has tended to increase. Because of the relatively high total cost, the first phase of digital computer application to process control is characterized by the centralization of many functions in a single (though sometimes in several) process computer. Such centralization does not permit full utilization of the many advantages of digital signal processing and rapid economic pay-off as analog back-up systems or parallel standby computers must often be provided to cover possible breakdowns in the central computer. In 1971 the first microprocessors were marketed which, together with large-scale integrated semiconductor memory units and input/output mo dules, can be assembled into more cost-effective process microcompu ters.




Digital Control Systems


Book Description

The extraordinary development of digital computers (microprocessors, microcontrollers) and their extensive use in control systems in all fields of applications has brought about important changes in the design of control systems. Their performance and their low cost make them suitable for use in control systems of various kinds which demand far better capabilities and performances than those provided by analog controllers. However, in order really to take advantage of the capabilities of microprocessors, it is not enough to reproduce the behavior of analog (PID) controllers. One needs to implement specific and high-performance model based control techniques developed for computer-controlled systems (techniques that have been extensively tested in practice). In this context identification of a plant dynamic model from data is a fundamental step in the design of the control system. The book takes into account the fact that the association of books with software and on-line material is radically changing the teaching methods of the control discipline. Despite its interactive character, computer-aided control design software requires the understanding of a number of concepts in order to be used efficiently. The use of software for illustrating the various concepts and algorithms helps understanding and rapidly gives a feeling of the various phenomena.




Digital Control Using Digital Signal Processing


Book Description

This text introduces digital control systems and demonstrates how to analyze and design these systems. It shows how to use DSPs to implement controllers designed with both classical frequency domain techniques and modem state variable methods. Computer-aided analysis and design tools, like MATLAB, are used throughout, and the basic mathematics of digital control systems are presented early, so users have the grounding they need to solve real-world problems. Classical design techniques for compensators are explained, as is the use of DSPs to implement compensator transfer functions. The book closes with a detailed look at modern state space techniques like pole placement state estimation; the optimal linear quadratic regulator; and a brief discussion of fuzzy logic design.